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1 Summary 

This study describes methods that can be used to adjust the calculation of retirement benefits used in 
the NEMO pension insurance microsimulation model to correspond as much as possible to the projec-
tions of retirement benefits generated by other entities, thus bridging the differences arising from the 
use of varying assumptions and modeling principles. The aim is not to refine the current calculation in 
the NEMO model, but to modify it so that the results may compare to, and reasonably complement, 
those of other projections. 

At the beginning, we describe the methodology of the Ageing Working Group (AWG) and Czech Fiscal 
Council projections, which the representatives of MoLSA consider important for their future work. We 
also explain how the economic scenario is generated in the current NEMO model. 

The more variables we want to control, the more complicated the calibration is; therefore, we discuss 
below the conditions under which two projections can be considered aligned. We find that for many 
variables, consistency can be achieved by simply adopting certain inputs and assumptions. Among the 
remaining factors, we identify assessment base, employment and unemployment as the most important. 
We recommend calibrating these three values using more advanced methods.  

On the basis of extensive research of literature and foreign microsimulation models, we have described 
seven possible calibration methods in detail. Each of them is evaluated in general terms and in terms of 
implementation into the NEMO model. 

From these options we have selected two methods that we recommend integrating into the MoLSA 
microsimulation model, one for the calibration of employment and unemployment and one for the cali-
bration of income. We further describe the general calibration procedure and the specifics to take into 
account when aligning the model with the AWG projection or the Czech Fiscal Council calculations. 

In conclusion, we present a timetable for the implementation of selected methods into the current NEMO 
model.  
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2 Initial Situation 

In this chapter we describe the purpose of the study, the reasons why MoLSA wants to proceed with the 
calibrations, and the requirements it lays down for them. This sets the starting points for all subsequent 
chapters.  

2.1 Purpose of the Study 

The purpose of the study is to analyze the possible ways in which MoLSA can align its calculations with 
the external projection specified and to serve as a basis for possible later implementation of the selected 
calibration method. Its main goal is to provide MoLSA primarily with an overview of the possible solutions 
and their advantages and challenges and to recommend the most suitable approach. However, a part 
of this study which is no less important is the discussion of other possible options.  

2.2 Reasons for Calibration 

In addition to the calculations performed by MoLSA in its current NEMO model, discussions on state 
pension insurance are often based on other projections of the development of the Czech pension sys-
tem. These alternative projections differ from MoLSA results in the data and assumptions used, in the 
methodology chosen and, ultimately, also in the nature of the results. The most important differences 
result from the fact that they are not typically microsimulation models but cohort models. Therefore, they 
lack detailed information on the probability distributions of the resulting variables across the population 
which are provided by microsimulation models.  

Therefore, the purpose of the calibration is to add to the external projections this missing information, 
i.e., to determine the probability distributions of the resulting variables that would be simulated by the 
external projection if the projection were generated by a microsimulation model based on assumptions 
similar to those used in this external projection.  

2.3 Theoretical Requirements for Calibration 

In order to meet the calibration objectives described in the previous section, at least the following con-
ditions must be met:  

• The result of the calibrated run of the MoLSA model must match the values of the external 
projections for the important variables. The specification of the level of precision of the match 
we require and which variables we consider important is provided in chapter 3.1.  

• The calibration should preserve as much as possible the probability distribution of the im-
portant variables and their dependencies. Only then the microdata added to external projec-
tions will be reliable and suitable for further analysis.  

In addition to these two conditions, the methods will be evaluated, at the request of MoLSA, according 
to the following criteria: 

• effectiveness,  

• difficulty of implementation,  

• financial demand/cost of the implementation, and  

• user comprehensibility.  

 The Calibration Does Not Change the Model Functionality 

The description of methods in this document is based on the assumption that during the calibration, the 
aim is the model results approaching the external projection through appropriate adjustments and rec-
onciliation of model inputs and probabilities and the occurrences of the modeled events, provided that 
the formulas used for modeling interactions and amounts, i.e., in particular the formulas for determining 
entitlement to a particular transition, entitlement to individual benefits, or formulas for determining ben-
efits, will remain unchanged. 
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In particular, this document does not discuss the possible approaches to reconcile the results using 
approaches such as: 

• introduction of a scaling factor in the formula determining the amount of pension, which would 
result in this formula deviating from the formula valid in current legislation;  

• adjustments to functionality (e.g., formulas for determining the benefits) so that the functional-
ity approaches or matches the formulas in the external model. 

2.4 Description of Important External Projections 

Although a larger number of projections of the pension system or parts thereof can be found, discussions 
with MoLSA representatives have revealed two projections that are particularly relevant to their needs:  

• Projection of the Ageing Working Group for the needs of the European Commission, and  

• Projection of the Czech Fiscal Council.  

Therefore, when assessing the suitability of calibration methods, we will pay particular attention to how 
well the MoLSA calculations approach these two projections specifically.  

 Ageing Working Group (AWG) 

The main result of the Ageing Working Group projection (Ministry of Finance, 2017) is the projection of 
pension expenditure as a percentage of GDP divided by type of pension.  

The basic input to this calculation is two external projections: 

• Demographic projection of EUROSTAT, and  

• Projection of the labor market of CSM (divided into cohorts), including, for example, projec-
tions of the average salary, average duration of pension insurance, degree of economic activ-
ity, rate of employment, personal assessment base, and the like.  

Total expenditure on a particular type of pension is calculated as the sum of the number of pension 

benefits awarded in the past multiplied by the average amount of the previous year's benefit and the 

valorization index and the number of newly awarded pension benefits multiplied by the average amount 

of the pension benefit in the current year. Calculations are performed separately for each cohort repre-

sented by year of birth and sex. 

The average amount of newly awarded benefit is determined by weighing the number of newly awarded 

pension benefits, determined on the basis of the personal assessment base and the period of participa-

tion in the insurance, by the number of recipients of benefits.  

An important input for determining the number of newly awarded pension benefits is the matrix of the 
number of new pensions (divided by type of pension) for given combination of personal assessment 
base and insurance period. 

The projection assumes that the effective retirement age will always be below the legal threshold in the 
future. When a person reaches this effective age, he or she always retires early (disregarding the fact 
that waiting until the statutory retirement limit could be economically more advantageous for a person). 

 Office of the Czech Fiscal Council 

The main result of the projection of the Office of the Czech Fiscal Council (Hlaváček, et al., 2019) is 
determination of the average amount and total amount of pension benefits paid, divided by the type of 
pension. The total amount of expenditure on specific pension benefits is calculated on the basis of  
number of pensions and the average amount of pension (distinguishing between the amount of the 
newly awarded benefit and the amount of the benefit awarded in the past). 

The starting point of this projection is several versions of the demographic Population Projection 2018 
– 2100 from the Czech Statistical Office (divided into cohorts). 

The number of old-age pensions is divided by sex and is obtained from the rate of retirement and the 
size of the population concerned. Retirement rate is the ratio of the number of people of a given age 
who receive old-age pension to the total population of a given age (excluding the disabled). In addition, 
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the retirement rate for women is unified for the old-age pension – it is assumed that each woman raises 
two children. In case of disability pensions, pension rates are differentiated according to the degree of 
disability. For survivor pensions paid individually, a constant proportion of pensioners in the population 
is considered; survivor pensions that are paid in parallel with old-age or disability pensions are also 
modeled on the basis of the retirement rate.  

The amount of newly granted old-age pensions is determined as a percentage of the average income. 
This percentage is determined separately for women and men and its development during projection is 
part of the model's assumptions (i.e., it is not counted in the projection itself). The pension is then valor-
ized annually by a percentage dependent on the calendar year.  

The number of terminated old-age pensions is determined on the basis of mortality tables; the number 
of new old-age pensions is then determined to keep the current state  in line with the rate of retirement. 
The amount of terminated old-age pensions in the simulation is set at 95% of average old-age pensions.  

For the projection of disability pensions, a constant ratio between the average disability pension of a 

certain degree and the average old-age pension is always assumed.  

The average amount of survivor pensions is determined as the average of the average old-age pensions 

for the last three years multiplied by the respective entered coefficient according to the type of pension. 

The costs for a given pension benefit are calculated on the basis of known average amount of a partic-

ular type of pension and the number of pensioners.  

The labor market forecast can be derived from other assumptions: the estimated number of employed 

individuals in the population can be calculated on the basis of the total income of the pension system 

and the average wage.  

2.5 Creating the Economic Scenario in the NEMO model 

Now that we know what projections the calibration will want to approach, we will look at the other side 
of the task and describe the inputs and assumptions that govern the projections in the NEMO model. 
This will subsequently make it easier for us to assess how essential the different properties of the de-
scribed calibration methods are in the specific case of the model.  

The term ‘economic scenario’ refers to the results of the projection of the pension system as a whole: 
the number of pensioners and the amount of money spent on their pensions, the number of working 
individuals and pension insurance payments collected from them, the number of persons who neither 
receive pension nor pay respective premiums. This scenario is the result of individual projections of 
individuals in the microsimulation model. The relevant part thereof is the life path of each person or, in 
other words, knowledge of the period when the person studied, worked, received unemployment bene-
fits, received a pension, or was in another life situation relevant for the calculation of the pension insur-
ance.  

The life paths of individuals are randomly generated in the NEMO model using transition probabilities 
and events that may result in individual transitions. The parameters defining these processes are in 
many cases dependent on other variables (e.g., age, sex, education, income, etc.) or indirectly inter-
connected. This chapter describes the basic principles and effects that lead to transitions between the 
statuses.   

 Basic Principle 

All calculations in the model are performed at the level of the model point which represents one individual 
from the population of the Czech Republic. Given the fact that in addition to the life path of the individual, 
some cash flows modeled also depend on their family, the model point includes the principal individual 
and several secondary persons (partner and children). However, the cash flows themselves are calcu-
lated only for the principal individual, because for each secondary person there is a model point where 
he or she is the principal individual. There are two basic variables which define the random processes 
described: 

• STOCH_EVENTS: 
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In this variable, all the calculations associated with the generation of random events and their parameters 
are performed. The calculations are performed on a monthly basis and are applied to each person at the 
model point. 

In the modeling process, the fulfilment of the requirements listed in table events_req.fac is first tested for 
each event. If any of the required conditions is not fulfilled, the event will have a zero probability. 

If all conditions for the given event are met, the probability of occurrence is uploaded (see probabilities in 
table events.fac). A random number is generated and its value determines if the event will occur. 

• STOCH_MOVE: 

o In this variable, all the calculations of the transitions between the working statuses of 
an individual are performed. The calculations are performed on a monthly basis for 
each living person. 

o It includes several methods of leaving a status: 

▪ Matrix method: 

• First, possible new statuses are identified based on the transition matrix; 

• Subsequently, based on a generated random number, a decision is made 
whether a transition to one of the possible statuses occurs, or whether the 
status remains the same.  

▪ Duration method: 

• At the moment of entering the status of this type, the status duration is 
randomly generated based on the defined distribution; 

• Subsequently, a test is performed every month whether the time in the 
given status has reached the duration. Then a return to the previous status 
occurs.  

▪ Combined method: 

• It combines the above-mentioned two approaches. 

 Modeled Phenomena 

The modeled events can be divided into the following interconnected areas: 

• Events; 

• Career paths – they capture the economic (in)activity of an individual throughout his or her en-
tire life; 

• Family relations – they reflect the marital status of the individual and the number of children 
born and raised; and 

• Cashflows consisting of: 

o the individual’s income; 

o payments to the pension system; and 

o payments of benefits from the pension system. 

The following chapters analyze in detail the individual events and statuses modeled with emphasis on 
their assumptions and inputs affecting the respective probabilities of transitions.  

 Events 

All important events (see table events.fac in the NEMO model) are randomly modeled on a monthly 
basis using defined probabilities. State variables are constructed based on these events (see table sta-
tus_vars.fac); the career paths and family relations are linked with these status variables in the model. 
The list of events with their assumptions, parameters affecting the probabilities of their occurrence and 
the related state variables are given in the following table. The basic status variables (age and sex) on 
which most of the probabilities depend are not explicitly listed in the table.  
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Event Related sta-
tus/variable 

Conditions of oc-
currence 

Variables affecting the 
probability of occurrence 

Birth Living   

Death Living   

Completion of sudies Student   

Occurrence of disability Disability Legislative condi-
tions 

 

Change of the degree 
of disability 

Degree of Disabil-
ity  

  

Cessation of disability  Disability   

Marriage Married  Numerical rank of a marriage 

Divorce/Widowing Married  Numerical rank of a marriage 

Birth of a child Care of a child  Number of children already 
born 

Termination of care of 
a child 

Student   

Start and end of care of 
a family member 

Care of a family 
member 

 Number of years since the 
last child was born 

Retirement Old-age pen-
sioner 

Legislative require-
ments 

Number of years from/to enti-
tlement to a regular pension 

Emigration In the pension 
system 

  

Change of the possibil-
ity of concurrent work 
and receiving an old-
age pension 

Choice of the pos-
sibility of concur-
rent work and re-
ceiving an old-age 
pension 

Status of old-age 
pensioner 

Type of old-age pension 
(regular, late, early)) 

Change of salary Salary   

Table 1: List of events captured in the NEMO model and their characteristics 

 Career Paths 

A career path for a model point is a sequence of statuses of economic activity and inactivity (see table 
statuses.fac). Change of the status triggers the events occurrence. In some cases, statuses are divided 
into sub-statuses (see table sub_statuses.fac). A list of statuses and sub-statuses of the career path is 
presented in the following table. The probabilities of transitions between them depend on age and sex.  

State Sub-state 

Employed Healthy 

 Sick 

Unemployed Registered with the employment office and receiving unemploy-
ment benefits 

 Registered with the employment office without unemployment 
benefits 

 Other cases 
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Inactive individual Registered with the employment office and receiving unemploy-
ment benefits 

 Registered with the employment office without unemployment 
benefits 

 Not registered with the employment office 

Person outside the pension 
system 

Emigrant 

 Member of armed forces 

Deceased  

Table 2: List of states and sub-states of an individual in the NEMO model 

The reasons for inactivity are also modeled for inactive persons (see table inact_periods.fac). The mod-
eled reasons for inactivity are as follows: 

• Taking care of a child; 

• Disability pensioner of degree 1-3; 

• Old-age pensioner; 

• Student; 

• Child; and 

• Taking care of family. 

 Family Relations 

Events leading to changes in family relations (e.g., marriages, divorces, and remarriages) are randomly 
modeled based on assumptions regarding marriage rates and divorce rates. One person is always as-
signed the same partner in the model, whose parameters are defined within the creation of model points. 
The principal individual has the partner assigned already at the beginning of the projection, even if he 
or she is single or divorced. Similarly, the principal individual's partner remains the same also in the 
event of remarriage after divorce or widowhood.  

Another important event is the birth of a child. This is modeled on the basis of fertility rates of a woman 
in the pair. Career paths of children are modeled in a simplified way, the calculation takes place in 
variable STOCH_CHILDREN using 4 statuses: 

• Dependent child; 

• Independent child (e.g., earning income or older than 26 years); 

• Orphan (here a distinction is made between a half-orphan with the principal individual de-
ceased, a half-orphan with the secondary person deceased and a double orphan); 

• Deceased. 

Parameters affecting the probabilities of transition between the statuses mentioned in this chapter are 
determined only by external statistics (e.g., fertility rate, divorce rate, number of orphans, etc..) and basic 
status variables such as sex and age. 

 Cash Flows 

The following cash flows are modeled: 

• Gross monthly salary determined on the basis of: 

o Wage inflation; 

o Career growth; and 

o Economic status. 

• Payments to the pension system: 
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o According to legislative rules; 

o Derived from the individual’s income. 

• Old-age pensions: 

o According to legislative rules; 

o Derived from the individual's income history, years in work and, for women, the num-
ber of children raised. 

• Disability pensions: 

o According to legislative rules; 

o The admissible status is disability pensioner. 

• Widow’s pensions: 

o According to legislative rules; 

o The admissible status for the entitlement is married. 

• Orphan's pension: 

o According to legislative conditions. 

Size of the majority of modeled cash flows is therefore determined, given the knowledge of several 
status variables, based on legislative conditions. Only in case of salary, the calculation takes into ac-
count additional random effects. 

 Salary Modeling 

The starting salary of an individual after completion of studies is a value which serves as an input pa-
rameter of the model point. In case that an individual works before completion of studies, his or her work 
is considered a short-term termporary job (typically with lower salary), and after graduation their salary 
jumps to a value from the model point. Salary increase occurs once a year and comprises three com-
ponents: 

• Wage inflation (average wage growth in the economy); 

• Career growth: 

o Two versions of modeling: 

▪ Stochastically based on distribution of salary; or 

▪ Deterministically from average age-dependent growths. 

o Controlled via variable USE_STOCH_SAL_GTH in the table global; 

o Possibility to add dependence on the amount of salary via variable 
USE_SAL_DEP_SAL_GTH from the global table. 

• Salary decrease due to inactivity and unemployment: 

o Dependent on age. 

In order for the average salary growth in the projection to really correspond to wage inflation, a so-called 
residual wage inflation calibration is being introduced to correct the deviations, if any, from this average. 

For more information on this mechanism see chapter Chyba! Nenalezen zdroj odkazů..  

 Summary 

The following assumptions are essential for the economic scenario:  

• Demographic assumptions, i.e., mortality, birth rate, disability tables 

• Assumptions for modeling life paths, i.e., transition probabilities between different statuses  

• Parameters determining the individual's income, i.e., wage inflation and prerequisite for career 
development.  
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Many of these variables are determined as a result of the interaction between individual transition prob-
abilities. It is therefore not easy to calibrate them separately. The most important of these are the number 
of employed and unemployed individuals, and the occurrences also concern, for example, the number 
of individuals on sick leave.  
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3 Calibration Suitability Criteria 

While in the previous chapter we described the general situation in which the calibration takes place, 
here we set out the specific criteria by which we will select and evaluate the calibration methods in the 
following sections.  

3.1 Criteria of Consistency of Two Projections 

When assessing the consistency of two projections, a balance needs to be found between two effects. 
On one hand, we want to consider as many variables as possible, because no variable can guarantee 
consistency individually. For example, two projections, which coincidentally have the same expenditure 
on the pension system but have quite different population size, are certainly not considered to be rec-
onciled and therefore no micro-data can be assumed/adopted between them.  

On the other hand, the calibration becomes significantly more complicated with each addition of an extra 
variable. With a new variable, not only will the targets monitored be added and the calibration will there-
fore have to be finer, but at the same time, we will not be able to use the calibrated variable to achieve 
the desired values for the other target variables. For example, if only the total amount of old-age pen-
sions paid is specified as a calibration target, it can be controlled by adjusting the number of pensioners, 
salaries or insured periods in the history of individuals. If we wanted to calibrate all these four variables, 
we could get into a situation where the number of pensioners, salaries and insured periods can be 
calibrated, but the total pensions paid still do not match. Then it will be necessary to adjust the other 
variables such as the length and type of the different substitute periods or the education level achieved, 
which have a less direct influence on the amount of the pension and which also affect the other variables 
we want to calibrate.  

We will partially solve this problem by dividing the calibration into two parts (see also chapter 4.1). In 
the first part, we only take the inputs that can be directly supplied to the projection in the NEMO model. 
This alone will help us achieve a part of the calibration targets. In the second part, we will use selected 
additional methods for a smaller number of key variables.  

 Variables Relevant for Calibration 

Now, for the most important variables from the external pension projections, we will assess how relevant 
they are for the calibration result. Then we will select from them a final list of variables that we want to 
monitor within the calibration.  

Volume of pensions paid 

Since this is the main result of both the NEMO model and both external projections, it is necessary to 
monitor this variable. At the same time, however, its value is directly determined by other variables, such 
as the number of pensioners, the average wage and, in particular, the lifelong career paths of individuals. 
There is therefore no point in calibrating directly the volume of pensions paid as such – by doing this, 
we would separate the amount of pensions from the variables on which they depend and lose the op-
portunity to explain the results using other parts of the projection. This decision corresponds to the 
requirement laid down in chapter 2.3.1.  

It is therefore better to focus on the variables that determine the amount of pensions. Once these are 
completed, the volume of pensions paid should also match the external projection. If this is not the case, 
other variables that have not been previously included in the calibration may need to be addressed; or 
it is possible that the calibration target is not actually achievable at all (this may occur, in particular, 
because in the microsimulation pension, projections of pensions are very closely linked to the individu-
al's work history and hence the past payments to the system, whereas in macroeconomic models, indi-
vidual variables are projected more independently, and thus with a greater degree of freedom in the 
development of individual variables).  

Average amount of pensions paid 

Similarly to the volume of pensions paid, here, too, it is more appropriate to calibrate the variables that 
determine the amount of the pension paid.  
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Volume of payments into the system (pension insurance payments) 

In the NEMO model, this is another key output for assessing the system's balance, so it is necessary to 
monitor this variable. However, the amount of payments in the model is directly determined by statutory 
pension insurance rates, individuals’ salaries and their employment. Direct calibration of this variable is 
therefore not possible, and it is necessary to calibrate salaries and employment. 

Total size of the population 

This assumption is crucial for any projection. It is also based on a small number of independent inputs: 
the initial population is determined by the database of model points and the future development is de-
termined by the assumption regarding new individuals (who are also entered among the model points) 
and mortality tables. Calibration of the population size should therefore always be performed as the first 
step of all. We expect that in usual situations, it will be possible to achieve a state where both projections 
reasonably correspond to each other in terms of the number of people in all age cohorts for all calendar 
years.  

Number of pensioners 

At the time when the total population size has been calibrated, the number of old-age pensioners de-
pends only on the probability of retirement and on the age at which people normally achieve the required 
insurance period.  

The AWG projection assumes that people will always retire once they reach the effective retirement age. 
This is usually lower than the statutory retirement age in these projections. Theoretically, this effect 
could be fully transferred to the NEMO model by setting the probability of early retirement for the relevant 
age and calendar year combination to be set to 1 (table retirement.fac). This would result in a full balance 
of the number of old-age pensioners, under assumption that the periods of insurance correspond in both 
projections. However, we would lose the plasticity of the NEMO simulation, which is an essential ad-
vantage. Therefore, we will adjust the probability of retirement so that the average retirement age is 
shifted to the value that we see in the external projection, but at the same time, the distribution in sur-
rounding ages remains as unchanged as possible. This method is described in more detail in chapter 
Chyba! Nenalezen zdroj odkazů. 

The projection of the Czech Fiscal Council determines the number of new old-age pensioners based on 
the population size, mortality rates, and retirement rates (divided by cohorts). These values can be used 
to calculate how many new old-age pensioners are assumed by this projection for each calendar year. 
As soon as we find out what part of the cohort has met the legal conditions for old-age retirement, these 
numbers of new pensioners can be replicated by appropriately adjusting inputs to Prophet. For more 
details see again chapter Chyba! Nenalezen zdroj odkazů. 

In both external projections, the number of disability pensioners depends on disability rates divided by 
age and gender. For AWG projection, we use data about newly approved retirements sorted by type of 
retirement, age and gender. Therefore, the probabilities of origin of disability can be easily calculated as 
a ratio of new disabled persons and the origin population without already existing disability and old-aged 
pensioners (this information is also included in AWG projection). We will determine the probability of 
termination of disability conversely, so the total number of disabled persons after application of mortality 
rate and terminated disabilities is matched.   

However, the projections of Czech Fiscal Council do not feature the number of newly incepted disability 
pensions, so we need to find another way, further specified in chapter 4.1. 

Widow’s pensions are significantly less relevant than old-age pensions. The advantage is that their 
number depends, apart from variables that must be calibrated also the purpose of old-age pensions (in 
particular mortality and salary), only on the marriage rate and the method of assigning partners, which 
in turn do not translate into any other substantial outputs of the model. Calibration of widow's pensions 
can therefore be included in analyses for which this type of benefit is relevant.  

Orphans pensions are not very significant in terms of the number or amount of benefits paid. In addition, 
their number depends, among other things, on the birth rate which also determines the number of pa-
rental leaves, which is generally a more important parameter. Attempting to calibrate the number of 
orphans’ pensions could hinder the calibration of the number of parental leaves without generating ad-
equate added value in itself. We therefore recommend not to include them in the calibration at all.  
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Number of people standing out of the retirement system 

The next group of individuals are the ones outside the retirement system. In particular, these are mem-
bers of armed forces whose pensions are calculated differently from pensions of the rest of the popula-
tion. Although, sometimes their primary data is missing (they do in case of both used external projec-
tions), it can be useful to compute them from other available data and further calibrate them as so-called 
residual group (see chapter 4.2). 

Average salary in the population 

The average salary is a key input into any projection of the pension system, as each person's pension 
depends directly on his or her previous income. It is present in the AWG projection as well as in the 
calculations of the Czech Fiscal Council. Therefore, reconciling the average salary should always be 
part of the calibration.  

At the same time, it is a value which depends, in the NEMO model, not only on the starting values and 
the wage inflation, but also on the number of unemployed individuals and their characteristics. It is 
therefore indirectly affected by values such as probability of finding a job or probability of taking a pa-
rental leave. Therefore, we expect the use of more sophisticated methods to calibrate this variable.    

Number of patients 

The number of patients does not occur in any of the known external projections. In the NEMO model, it 
depends on the income of the pension system - the person does not contribute to the system of inca-
pacity for work. However, since there are typically not many patients, this effect is not significant. There-
fore, we will not calibrate the number of patients or we will use it only for fine tuning at the very end of 
the calibration.  

Number of employed individuals 

The number of employed individuals is one of the basic characteristics of the labor market. The alterna-
tion of periods of employment, unemployment and inactivity fundamentally affects the amount of the 
individual's pension because the pension is directly proportional to the length of insurance which is 
largely achieved by employment. Without earning a sufficient insurance period, no pension entitlement 
arises. Therefore, it is always appropriate to consider calibration of the number of employed individuals. 
In the next chapters, we will focus on their specific implementation and its steps as well.   

In the NEMO model, the number of employed individuals depends primarily on transition probabilities: 
the probability that an employed individual will lose job and that an unemployed or inactive individual 
will find a job. Other essential assumptions include mortality and disability rates, length of studies for 
students, or the number of people taking parental leave. Moreover, we differentiate sub-status healthy 
and sick. This complexity means that calibration cannot be performed by simply adjusting the input 
parameters.  

While in the AWG projection, the number of employees is available divided by cohort, the Czech Fiscal 
Council does not model it explicitly, and only the total number of employed individuals in the population 
can be determined. Therefore, in their projections this variable cannot be used as a criterion of approach 
of projections.  

Neither one of the projections differentiates employment and self-employment. Therefore, we will con-
sider both these groups together in all applications.   

Number of self-employed persons 

As we have already mentioned, neither AWG projection nor the Czech Fiscal Council includes self-
employed projections, so their numbers need to be combined with numbers of employed persons. 

In the NEMO model, the behavior of self-employed persons differs from employees, particularly notic-
ing that the self-employed have lower incomes. Thus, if a model for a cohort assumes a different ratio 
of self-employed to employees than is implicitly surmised by an external study, this may result in an 
average salary mismatch. However, as we have no way of knowing whether the discrepancy was due 
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to differences in the numbers of self-employed or in the salary projection, we will choose a simpler 
method and straighten this difference solely by salary calibration. 

Therefore, we will not calibrate the number of self-employed per se. 

Insurance period 

The amount of the old-age pension directly depends on the length of insurance and a sufficient period 
of insurance is necessary for the entitlement to the (old-age or disability) pension to arise at all. It is 
therefore one of the most important values in any pension system model. Its amount is derived from the 
time spent by the person in employment and the substitute insurance periods he or she can obtain – 
unemployment and parental leave are particularly important in this context. Thanks to this, the length of 
the insurance can be skipped in the calibration and one can focus directly on the calibration inputs: 
employment, unemployment and time spent on parental leave. A similar approach is used by the pro-
jection of the Czech Fiscal Council where the length of insurance does not explicitly appear at all and 
the amount of pension is calculated directly as a percentage of the average salary, the amount of which 
is part of the model inputs. This percentage mainly includes the assumption for the average length of 
insurance.  

It is therefore recommended not to include the insurance duration in the calibration and to focus on the 
variables on which it is based.  

Number of unemployed individuals 

The distinction between the unemployed (i.e., those seeking employment with the help of the employ-
ment office) and other non-working individuals is important in the pension model, in particular because 
the unemployed individuals receive, under certain circumstances, a substitute period of insurance. The 
way of modeling unemployment thus significantly affects the level of pensions in the projection. It is 
therefore appropriate to consider the calibration of the unemployed individuals.  

Nevertheless, in terms of importance, it is a second-rank variable. Unemployment brings a substitute 
period of insurance only for a limited time (only as long as the person is entitled to an unemployment 
benefit and, on top of this period, for no more than three years in a lifetime), and so its impact on the 
pension is limited. At the same time, even if we do not calibrate unemployment, there are not so many 
ways to classify individuals incorrectly in terms of unemployment decisions (meaning inconsistently with 
the projection we want to approach). Assuming that both the total population and the number of em-
ployed have been calibrated, the remaining persons can be, in particular, unemployed, on parental leave 
or inactive. During parental leave, the parent also obtains a substitute insurance period, so any short-
comings in the numbers of the unemployed can be compensated for by the length of parental leave 
(although, of course, there is no guarantee that this compensation will always occur). So there is reason 
to believe that if we do not calibrate the number of unemployed individuals, the projection of MoLSA 
calibrated in other ways and the external projections we want to approach will still be quite close in 
normal circumstances.  

Theoretically, the calibration of number of unemployed persons might be used for example to influence 
period of influence. However, we strongly do not recommend such approach. Due to non linear relation 
of these two variables (both in terms of time and implementation) it would be very difficult to try to reach 
the calibration goal this way. 

Therefore, we recommend monitoring the differences in the unemployment rate between the two pro-
jections and implementing calibration only when we notice a very significant difference.  

The calculations of the Czech Fiscal Council do not include the number of unemployed individuals, so 
it cannot be used for calibration.  

Average duration of unemployment 

The average duration of unemployment is closely related to the number of unemployed individuals, but 
it is still a figure that can influence the model's results: if the average length of unemployment is short 
and unemployment is distributed among a large number of people, virtually everyone will have a suffi-
cient insurance period and everyone will have the period of unemployment counted as a substitute 
insurance period. Conversely, if the average unemployment period is long, a group of long-term unem-
ployed individuals with shorter insurance periods will arise, many of whom may not even become entitled 
to the pension. It is sensible to consider calibration of such data. In normal circumstances, however, 
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such extreme cases should not occur, so the calibration of this variable should not affect the results too 
much.  

In the NEMO model, transition to and from unemployment is governed by the probability of transition. 
These transition probabilities depend on each person's age and sex, so the overall average depends on 
the number of people in the population. This may change during the projection. Calculating the average 
length of unemployment would therefore not be straightforward. Given that the calibration of this variable 
will have a rather minor effect, we recommend that you do not perform it in the first step and only perform 
it if the pension system expenditure differs significantly from the external projection even after the other 
variables have been calibrated.  

This information, however, cannot be read from the projections of AWG or of the Czech Fiscal Council.  

Number of individuals on parental leave 

Like unemployment, parental leave is a condition from which a substitute period of insurance may be 
granted to a person who is not working. The number of persons on parental leave therefore does not 
reach the importance of the number of employed individuals and should be calibrated only in the second 
rank, but it is nevertheless a variable that may have a noticeable effect on the model results, its calibra-
tion cannot therefore be disregarded at once.  

The numbers of parental leaves depend on two figures: the birth rate which determines their beginnings 
and the average duration thereof. The birth rate can be calibrated with great accuracy by merely taking 
the inputs, so there should be no fundamental differences in the number of parental leaves in normal 
circumstances. The duration of parental leave is based on the probability that the mother will find a job 
or go into unemployment status. These are part of the NEMO model inputs and are entered according 
to age. Therefore, in the context of taking the inputs, these probabilities can be adjusted so that the 
average duration of parental leave matches the external projections.  

Neither the AWG projection nor the projection of the Czech Fiscal Council, however, operate with the 
average duration of parental leave. Therefore, in case of these two external projections, the number of 
persons on parental leave cannot be calibrated. However, if there is ever a calibration against a projec-
tion that has the necessary inputs, we recommend adjusting the probabilities of exiting parental leave 
included in the NEMO model based on this input.  

Number of persons providing another care 

The provision of care for close associates influences affects the amount of the pension paid, but it occurs 
only rarely. The external AWG projections and the projection of the Czech Fiscal Council do not include 
this information into their simulations, so there is no need to include this variable in the MoLSA calibra-
tion. 

Number of inactive individuals 

Inactive individuals are complementary to all other statuses for our purposes - in this group, we include 
individuals who are not employed or unemployed, do not study, do not receive a pension and are not 
on parental leave. These may be, for example, individuals who live on savings, who have remained in 
the household after parental leave, or who take care of a sick family member. Since this group is defined 
by the absence of another status, we will not calibrate it and instead, will focus on other statuses where 
we can use specific transition probabilities and conditions of occurrence for the calibration. Once all 
other statuses have been reconciled between the two projections, the number of inactive individuals will 
also match.  

Number of students 

Information on ongoing studies of an individual is relevant in the NEMO model during the derivation of 
model points where it is used as a basis to determine the expected future highest educational level 
achieved. It is less relevant during the projection; it is in particular manifested by the fact that students 
receive lower salaries and slightly different events may occur for them. Otherwise the student's behavior 
does not differ much from a non-student – he or she can become employed, unemployed and inactive, 
and their transitions between these statuses are with similar probabilities.  

There is also a method in the NEMO model where studies play a more prominent role: when chosen, 
the working student will remain at work until he or she completes his or her studies. The method is 
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currently not used. If MoLSA analysts choose to work with this method in the future, the impact on 
student employment will need to be considered: students who entered the model as working students 
cannot be excluded from this status by calibration. All the more reason to adjust the transition probabil-
ities of the other members of the respective cohorts.  

Neither the AWG projection nor the projection of the Czech Fiscal Council provide the number of stu-
dents. Moreover, as working students do not have a major influence on the modeling of pensions, we 
recommend focusing on other variables when calibrating.  

Marriages 

Modeling of married couples is essential in the NEMO model mainly because of the prediction of widow 
and orphan pensions. However, old-age pensions, which are only marginally influenced by marital sta-
tus, are mainly important for calibration. Therefore, we will not calibrate any of the prerequisites for 
modeling marital status (especially marriage rate, divorce rate and the number of married people in the 
initial population). 

Overlapping of variables 

Some people may be in multiple statuses at the same time, for example an old-age pensioner can work 
at the same time. The number of such persons can play a role even if both variables have been cali-
brated separately – for example, it may present a difference if the old-age pension within the group of 
70 year old working individuals is received by everyone (maximum overlap) or no one (no overlap).  

However, the concurrence of old-age pension and employment is the only important overlap that can 
occur. The statuses of unemployed, on parental leave and inactive are mutually exclusive, and they are 
not permitted to overlap with employment or with old-age pension. The concurrence of first or second 
degree disability pension with employment is not excluded; however, disability pensions are not frequent 
and are distributed across all age categories, so any mismatch in overlapping modeling will not be so 
manifest.  

As a result, the overlap rate is evident once we know the numbers of people in all the major statuses 
that occur in a given cohort. For example, if a certain group is supposed to have a total of 100,000 
people and 80,000 of those are pensioners, 10,000 inactive individuals and 20,000 employed individu-
als, then some people must necessarily be in multiple categories (because the sum of numbers in indi-
vidual statuses exceeds the number of people in the population), and since the only possible concur-
rence is that of old-age pension and employment, we will calculate immediately that there must be 
10,000 working pensioners.  

There is no need to calibrate the number of people in multiple statuses.  

 Variables Recommended for Calibration 

Developing on considerations in the previous chapter, we can see that calibration can be done in two 
steps.  

In the preparatory phase, we expect that it is possible to calibrate the following by taking the inputs and 
input assumptions correctly:  

• Initial population;  

• Birth rate;  

• Mortality; 

• Disability rate (and hence the number of disability pensioners); 

• Number of old-age pensioners (here we will not achieve an exact match, but at least an ap-
proximation).  

In the second phase, we recommend focusing on the following using more sophisticated methods than 
simply taking over the inputs:  

• Average salary in the population;   

• Number of employed individuals.   
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By successfully calibrating these values, we can achieve an approximation also in some other variables 
without having to explicitly deal with them:  

• Calibration of the number of  employed individuals automatically entails proximity in the num-
ber of unemployed individuals and in the period of insurance;  

• Match in a population projection shows side effects in similarity in the number of parental 
leaves;  

• Approximation of the population, salaries, numbers of pensioners and periods of insurance 
should also help approximate the total income and expenditure of the pension system. 

However, full match of the system revenue or expenditure modeled may not be achievable because the 
internal functioning of the micro-simulation model and cohort macroeconomic models is different (in 
particular because the microsimulation model is based on a firm link between the whole work history of 
an individual and his or her pension and also takes into account the distribution, not only the income 
averages). In certain cases, depending on the methodology of the external projection compared, cali-
bration, for example, of salaries and employment in the first years of the projection may even cause 
greater pension variations in the subsequent years. 

Another point of risk may present itself in setting the ratio between unemployment, duration of parental 
leave and inactivity, for which no requirement is laid down by the above-described calibration (in this 
case, inactivity includes all periods without pension insurance, including, but not limited to, studies). As 
a result, there may be a difference in the insured periods and subsequently also in the amounts of 
pensions between two projections even after calibration (parental leave is always insured, inactivity is 
never insured, and unemployment is insured only for a certain period of time). If this happens, the cali-
bration can be refined by including unemployment.  

3.2 Calibration Achievability Criteria 

Some of the variables we mentioned in the previous chapter are very complex in terms of data they 
depend on. For example, a person can only retire after having worked for an appropriate period of time, 
so the number of pensioners depends directly on the person's work history (including employment, sick 
leave, parental leave, etc.). Because of this complexity, calibration is generally a very difficult task in the 
context of the NEMO model. In order to maintain the internal consistency of the model, it may be nec-
essary to change all the components of the person's life path in addition to the calibrated variable itself.  

In some cases, calibration may not be possible at all. This happens when the external projection target 
values lie outside the values that the NEMO model can achieve within the implemented rules. Examples 
include a hypothetical situation in which an external source would forecast very low average salaries, a 
high number of old-age pensioners, and very high old-age pensions: in addition to salary, the pension 
depends only on the time worked. A very high pension can be achieved by working significant number 
of extra years, but such a solution would be inconsistent with the requirement for a high number of 
pensioners. Such a hypothetical external projection is therefore not internally consistent with the rules 
in the NEMO model and cannot be achieved by means of calibration.  

The range of achievable values can be determined by running the model on extreme assumptions se-
lected to always maximize or minimize one of the states monitored. This test does not need to be per-
formed before each calibration, as there are many runs and in most real cases, the calibration target 
should not be too far from the model results. However, it can be a useful method if the suspicion of 
unreachable targets arises for other reasons, such as a situation where the calibration has failed.  

Below we will describe how to determine the range of achievable values for each calibration target.  

Demographic assumptions 

The initial population should not need to be calibrated because this is a known figure. Theoretically, 
however, it is possible to enter any person into the model and thus achieve any values.  

Similarly, any values can be entered for mortality and birth rates, differentiated by age cohort, sex and 
calendar age, thus achieving any development in the number and age structure of the population.  
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Number of pensioners 

An old-age pensioner may be an individual who has acquired sufficient insurance and substitute insur-
ance period during his or her life. Retirement after the fulfillment of entitlements then depends on his or 
her decision and in the model, it is driven by the probability dependent on distance from the statutory 
retirement age. If we set the probability of retirement to zero, we can even achieve zero number of new 
pensioners. The number of existing pensioners develops with mortality. Increasing the number of pen-
sioners is significantly more difficult. We get the maximum number of new pensioners by setting the 
probability of retirement to 1 (i.e., everyone retires early as soon as they meet the legal requirements), 
and by ensuring that the legal conditions are met as quickly as possible. For this purpose, we set the 
probability of leaving employment to zero, set the probability of transition from unemployment or inac-
tivity to employment to 1, and set the probability of taking a parental leave to zero. This setting will have 
a drastic impact on the younger generations, but as we do not rewrite history, older individuals will be 
significantly less affected. Thus, the achievability limits for the number of pensioners in older cohorts 
may not be very far from the original results of the uncalibrated model.  

Theoretically, the number of disability pensioners can be manipulated arbitrarily by changes in disability 
rates. Any number is thus achievable in both directions. In addition, the reduction in disability pensions 
is due either to mortality rates that are consistent with a healthy population or to the loss of disability. If 
we zeroed the probability of the occurrence of new cases of invalidity and set the probability of invalidity 
to 1, we would achieve zero number of new disabled. However, such a scenario is unrealistic in practice. 
In order to obtain a more realistic estimate of the permissible values, we will at least maintain the initial 
numbers of invalidity by setting zero probabilities for the occurrence of disability and its termination. 
Then the number of disabled pensioners will naturally decrease according to mortality rates. Theoreti-
cally, it is also not difficult to modify the model so that the invalids die according to their own mortality, 
which can then be manipulated to achieve a lower number of disability pensions. It should be noted, 
however, that the invalidity limit calculated in this way is not strict and, if exceeded by external projection, 
it is not necessarily an error. 

If it is required to apply a mortality table or a disability table that is obviously incompatible with reality 
when assessing the achievability of the number of old-age and of disability pensioners,, it is appropriate 
to search in the external projection methodology instead and verify that the same values are being 
compared – for example, it would be possible that the external projection of the disability pensioners 
intentionally models only a part.  

Average salary 

As mentioned earlier, the average salary depends not only on the initial values and input macroeconomic 
assumptions, but also on the number of employed individuals and their characteristics. 

Theoretically, of course, any average salary can be achieved by simply setting salary inflation to an 
extremely high level or to a value very close to zero. However, such a result is not very informative, so 
we will now describe an approach where we avoid extreme interventions in the salary inflation.  

We will take advantage of the fact that the average salary may vary considerably for different population 
groups. We will therefore attempt to adjust the inputs in such a manner that low-income individuals leave 
the job.  

• We set the probability of retirement to 1 (i.e., they everyone retires as soon as they are enti-
tled to it) and we will prohibit the concurrence of receiving pension with gainful activity. This 
will exclude not only working old-age pensioners, but in particular working disability pension-
ers who typically have lower monthly salaries.  

• We let working students leave the job immediately after the start of the screening and set the 
probability of finding a job while studying to 0. This will exclude working students; the students 
will enter the labor market only after completion of their studies with their full starting salary.  

• We will set the salary decrease in the event of one-year unemployment/inactivity to 0%, thus 
ensuring that the starting salary of a newly employed individual who has come from an unem-
ployed or inactive status will not be affected by his or her previous work history.  

• We leave the residual inflation with the values used for common calculations.  

After this transformation, only full-time employees who have had their annual salary increased on a 
regular basis or at least not reduced will remain in the population.  
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The lowest average salary can be achieved by the following settings:  

• We will set the probability of retirement so that everyone works five extra years. The percent-
age of career salary growth is often negative for the elderly.  

• We will leave the probability of overlap of working and receiving pension according to the set-
tings for the common calculations of MoLSA. As a result, working disability pensioners, who 
generally have significantly lower salaries, will remain among working individuals.  

• We set zero probability of leaving the job without an event for the working students (however, 
we will not interfere with leaving the job as a result of an event). Working students receive 
lower income compared to the earnings they receive after graduation.  

• We will leave career growth and wage inflation unchanged (even the assumption of a constant 
salary in the course of the entire life is not very realistic and it is not clear how to determine the 
lowest meaningful year-on-year increase).  

• We leave the residual inflation with the values used for common calculations.  

Thus, with the model values set in this manner, we maximize the number of working individuals from 
low-income groups. This ultimately leads to the minimum average salary.  

Number of employed individuals 

The achievable values of the number of employed individuals can be examined from two points of view. 
If we are interested in purely mathematical extremes based solely on model properties and disregard 
the feasibility of our set values, we can achieve both full employment (i.e., all individuals in the population 
work, including pensioners, students or mothers immediately after birth), and zero employment (i.e., 
nobody works). This finding serves primarily as a warning that input parameter settings which are not 
well thought out can lead to completely unrealistic values. As the next task, we will try to find the limits 
of achievable results with input values consistent with reality.  

Important factors affecting the number of employed individuals are not only the probability of transitions 
between working statuses, but also the probability of retirement or the probability of taking a parental 
leave.  

To achieve full employment, we set the probabilities of transition from the inactive / unemployed status 
to the employed status to 1 and, conversely, set the probability of loss of employment to zero. Likewise, 
we set the probability of working concurrently with (old-age and disability) pension as equal to 1. Another 
equally important factor is the care of a family member. In order to achieve a 100% workforce, we set 
the probability of transition from care of a child or care of family to employment as equal to 1, irrespective 
of the time since the last child was born. On the other hand, we set the probability of the individual taking 
a parental leave when a child is born to zero. A more radical solution can also be implemented, namely 
setting the probability of the birth of a child to zero, thereby cancelling the women’s departure to mater-
nity leave and subsequently parental leave. If the population modeling is determined in this way, the 
development of the number of employed individuals will depend only on the birth rate, mortality and 
migration balance.  

In order to achieve the minimum number of employed individuals, we substitute the above parameters 
with parameters of the opposite value.  

In order to achieve a “logical” maximum for the number of employed individuals, we recommend not to 
interfere with the probability of occurrence of events (e.g., birth of a child) and only set the probability of 
transition from unemployment to employment to 1 and also set the probability that a student will be 
employed after completing education (transition linked to an event) to 1. We will not allow retirement 
until the person has worked five extra years. On the other hand, the probabilities of transitions from 
inactivity to employment will remain unaffected, in particular, the probabilities of returning to employment 
after the birth of a child and the probability of old-age pensioners working will be preserved. This setting 
thus describes a very high demand for work, but at the same time respects life situations in which starting 
an employment is unlikely.  

Finding the opposite limit is more difficult, as it is not clear how low the demand for work can be in reality. 
Therefore, we will maintain the original probability settings for all transitions between working statuses 
and will focus on groups with generally lower employment, i.e., students, pensioners and mothers on 
parental leave. For students, we set the probability of finding a job during their studies without an event 
to 0 and the probability of leaving a job during their studies without an event to 1 (preserving the effect 
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of the events). For pensioners, we set the probability of early retirement to 1 and prohibit overlap with 
gainful activity. Similarly, for women taking care of a child, we will allow them to start working again only 
after the maximum parental leave period has elapsed. Of course, this approach does not give us the 
lowest conceivable values – for example, there are many cohorts of men around the age of 40 for whom 
we have not made any adjustments because they do not include members of any of the three groups 
adjusted. It is therefore an indicative threshold; if the value according to the external projection is to be 
lower, it may not immediately mean that it is unachievable, but caution is advisable.  

Number of unemployed individuals  

Similarly to employment, in the number of unemployed individuals it is necessary to distinguish between 
limits achievable purely mathematically from unrealistic inputs and limits the model should actually keep 
within.  

We get the lower theoretical limit of the number of unemployed individuals under the same conditions 
as those for the full employment in the previous section. The upper limit will not be exactly 100%, as 
some inactive individuals cannot switch to unemployment (e.g., old-age pensioners) or such transition 
is limited (e.g., students). Again, however, we are able to get very close to full unemployment.  

The upper (lower) logical limit of the number of unemployed individuals can be achieved by means of 
the following adjustments: 

• We set the probabilities of finding a job after completion of studies to 1 (to 0).  

• We set the age of retirement to be five years after reaching statutory retirement age. Some 
older people will lose their opportunity to retire and a certain percentage of them will remain 
unemployed (for the lower limit, everyone retires early when they are entitled to it and thus be-
comes inactive).  

• We change the probabilities of transitions from the admissible types of inactivity to unemploy-
ment to 1 (to 0). This adjustment can be made for disability pensioners and for individuals in 
the state of caring of a child, but not for students, old-age pensioners and mothers on parental 
leave.  

3.3 Values Implied by External Projections 

The variable that we would like to calibrate does not have to be projected in the external source at all. 
At the same time, however, this may be a relevant assumption because of which the volume of pensions 
in the external projection and the MoLSA projection will differ, even if all other important variables are 
calibrated. This is especially a problem of the projections of the Czech Fiscal Council where the explicit 
information on employment and unemployment is missing. We will not deal with the AWG projection in 
this respect because all variables required in chapter 3.1.2 are included in it, and more detailed calibra-
tions are not recommended.  

The projection of the Czech Fiscal Council can at least be used to find out the total number of unem-
ployed individuals because the model's assumptions include the total income of the pension system in 
the calendar year and the average wage. However, there is no division by cohorts. And it is entirely 
impossible to get the number of unemployed individuals, because there is no distinction between the 
unemployed and the inactive in the projection.  

We have not been able to get more implicit data. Although, for example, the number of new pensioners 
is available in the projection, it is not known how their number is divided by cohorts or how the number 
of pensioners is influenced by the time worked and how willing people are to retire early or work extra 
years.  

In general, the calibration options cannot be largely extended.   

3.4 General Requirements for Calibrations 

 List of Requirements 

According to (O'Donoghue, et al., 2014), each calibration method should meet four basic requirements:  

1. Projection approaches required values. This is the primary goal of any calibration.  
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2. Preserves the relationship between explanatory and dependent variables. For example, if the 
amount of the pension is clearly determined by a person's work history, the calibration should 
not break that relationship by approaching the pension target value, but leaves the history of 
the individuals unchanged.  

3. Preserves the shape of all probability distributions. For example, if in the real population the 
employment rate of 30-year-old men is higher than the employment rate of 60-year-olds, the 
calibration should maintain that difference. 

4. It is sufficiently computationally efficient. This criterion is important for MoLSA as without cali-
brations, the full run of the model takes approximately 23 hours and the complete preparation 
of the inputs takes about five days.  

Please note that fulfilment of these conditions will ensure fulfilment of the theoretical requirements de-
scribed in chapter 2.3.  

Stephensen (Stephensen, 2016) extends the list of calibration requirements and claims that a good 
calibration method shall meet the following criteria:  

1. Approach (in the expected value) the target values; 

2. Preserves the original shape of probability distributions; 

3. Preserves zero probabilities; 

4. It is formulated symmetrically; 

5. It is able to calibrate multinomial events, i.e., probability decisions with more than two possible 
results; 

6. It is particularly effective when probabilities determined by the logit function are calibrated; 

7. It is computationally efficient; and 

8. It is simple in terms of implementation.  

The first two points correspond to points 1, 2 and 3 postulated by O’Donogue and Li. The third point 
emphasizes that setting a probability equal to zero is a very strong claim – meaning that an event is 
completely impossible. If under no circumstances a certain event can occur prior to calibration, it should 
not occur as a result of the calibration.  

Symmetry means that if a given probability decision has several realizations, it does not matter which of 
these realizations we will calibrate. For example, if we calibrate the number of deaths, we should arrive 
at the same number of deaths and survivors as we did with the calibration of the number of survivors. 
In chapter 4 we will see that, although this condition is natural, it is not fulfilled for some commonly used 
calibration methods.  

Although much of the common probability decisions contained in microsimulation models are binary 
(e.g., the decision between survival and death), in some cases, multiple target statuses may be accepta-
ble – for example, one can imagine a model in which an individual, after having completed his or her 
studies, can enter the status of employment, unemployment, or inactivity. In this case, an advantage is 
if the existing calibration method can be applied to these transitions without much intervention. However, 
a large number of calibration methods allow only binary decision making.  

Logit functions are widely used in practice and especially for probability calculation. Therefore, when 
evaluating calibration methods, for example in terms of maintaining the form of distribution or computa-
tion difficulty, it may sometimes be advisable to consider this case specifically. From the MoLSA point 
of view, it is not a particularly relevant point because the probabilities used in the NEMO model mostly 
use empirical distribution instead of logistic regression.  

The last two criteria are essential for the ability to deploy and use the method in practice.  

In this study we will evaluate according to Stephenson's criteria. In doing so, we will consider that point 
5 and especially 6 are not particularly relevant for the needs of the NEMO model.  
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 Checking Compliance with the Requirements 

In addition to laying down requirements for calibration methods, Li and O’Donoghue also propose ways 
to assess the degree of compliance with these requirements for different calibration methods and eval-
uate some of the selected methods according to them (O'Donoghue, et al., 2014). In the following chap-
ters we will refer to their results for those combinations of criteria and methods that the authors included 
in their study. Other cases will be evaluated on the basis of our own experience and considerations, or 
very indicative calculations. Therefore, we will not use the methods mentioned in this chapter because 
the actual implementation of the calibration methods described goes beyond the scope of this study. 
However, the recipient of the study is advised to perform these tests if the decision on the calibration 
method cannot be made using other criteria.  

Specifically, Li and O’Donoghue recommend monitoring four variables.  

Target deviation index 

This variable assesses the degree of fulfillment of the condition point 1 set out above. It compares the 
target number of events with the actual number according to the following formula  

𝑇𝐷𝐼 =  
𝑇 − 𝑆

𝑁
, 

where TDI is the deviation index, T is the number of actual events, S number of events simulated by the 
model, and N the total number of individuals (or other units) for whom the event might have occurred. 
This index can only be applied to binary variables (i.e., variables that can only have two statuses, for 
example death, unemployment, childlessness). In addition, for MoLSA purposes, it is necessary to se-
lect a variable for which the number of events can also be determined from the results of the external 
projection – for example, the number of pensioners is included in these projections, but the number of 
sick individuals is not.  

Distribution derivation index 

This variable assesses the degree of fulfillment of the condition point 2 of the Stephenson requirements 
for calibrations. It is based on the assumption that if the calibration perfectly maintained the probability 
distributions, the expected values of any two groups of persons would remain in the same ratio (for 
example, if the average salary of men before calibration was 20% higher than that of women, it shoiuld 
be 20% higher also after calibration).  

Such situation will only occur if the only adjustment made during the calibration is to multiply all values 
by a common parameter. First, we define the parameter R as the ratio of the mean value of the measured 
variable after and before calibration. Then we divide the population into n groups and calculate the 
following for each group 𝑖: 

• expected value of the measured variable before calibration and we denote it 𝑂𝑖, and 

• expected value of the measured variable after calibration and we denote it 𝑆𝑖.  

In addition, if we state that 𝑁𝑖 is the number of individuals in group 𝑖 and 𝑁 the total number of individuals 
in the population, we can use the following formula for the calculation:  

𝐷𝐷𝐼 =  ∑
𝑁𝑖

𝑁
(𝑆𝑖 − 𝑅𝑂𝑖)

2

𝑛

𝑖=1

. 

DDI is out testing value. The term 𝑅𝑂𝑖 expresses the expected value that group 𝑖 should have if the 
distribution were perfectly preserved. Therefore, the more significant breach of the distribution for the 

given group, the greater the parenthesis. Fraction 
𝑁𝑖

𝑁
 subsequently weighs this value by the size of the 

group – if there is a large deviation for a group that is insignificant in size, it may still be a good calibration. 
Zero value of DDI therefore indicates perfect match of the distribution before and after the calibration, 
and the higher DDI, the more distant the new distribution is from the original one.  

The values of the index depend on the original expected value of the calibrated variable and the number 
of groups, so it makes no sense to compare the calibrations of different variables with each other (e.g., 
it cannot be said that any value below any threshold is acceptable), but only different methods of cali-
bration of the same variable to the same target value.  
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The selection of the groups for which the DDI is calculated can be customized using the calibration 
method. Generally, we recommend using two basic sections. In the first one, our groups will correspond 
to common cohorts, i.e., we will divide the individuals in the model by year of birth and sex. This will 
verify that the dependencies on these two basic parameters have been preserved. As a second section, 
we then divide each cohort according to the size of the calibrated parameter into, for example, 100 levels 
and bring together people of the same level from all cohorts into one group (i.e., for example, when 
calibrating salary, we would include in the first group 1% of the highest earners from each group). This 
will verify that there is no bias of the probability distributions within the cohorts.  

It should be noted that this method is made for calibration during the model run, and not for calibration 
performed solely by adjusting the input parameters. We expect that some input values will always be 
adjusted for calibrations performed by MoLSA (e.g., mortality tables will be taken over) which may or 
may not be followed by calibration during the run of the model. Values of the original distribution before 
calibration during model run will be then substituted for 𝑂𝑖, but after the adjustment of the input param-
eters. These are therefore not the results of the MoLSA’s own projection.  

If the calibration is performed solely by changing the input parameters, there is no point in using the 
distribution derivation index. There may be differences from the distribution observed in MoLSA's own 
projection, but in this case the difference will be a natural and desired result of the change in the param-
eters.  

Run time in seconds  

This value assesses point 7 of Stephenson's calibration requirements. When comparing two calibration 
methods, the method that makes all adjustments in a shorter time with the same inputs and the same 
calibration targets is more suitable in this respect. Since the effectiveness of some methods may con-
siderably depend on the inputs, we recommend performing this test for several different initial settings, 
varying by the number of model points and the calibration targets in particular.  

General fit measure 

This method specifies more fully the degree of fulfilment of item 1 out of the calibration requirements. It 
indicates the number of events that occurred in the calibrated model, but not in the target statistics to 
which we want to approximate the model by the calibration, and, on the other hand, the number of events 
that did not occur in the model, but did occur in the target statistics.  

For the purposes of MoLSA, it would be possible to examine the results of the model against reality. 
However, this is not part of the objectives set for this study. This measure does not say anything about 
the approximation to the external projections because only the aggregate values are available in the 
external projections concerned, and information on the occurrence of individual events is missing.  

In addition to these numerical methods, we recommend that you perform a general test of meaningful-
ness after each calibration, whether it is performed by interfering with the model run or by adjusting the 
input parameters. The user should list the results of the main variables for some important population 
groups and check to what extent they meet the expectations. If the observed deviation from MoLSA’s 
own projections is too drastic, it will be necessary to consider whether the resulting microdata after 
calibration is sufficient for its purpose or whether the calibration needs to be adjusted. Therefore, the 
exact form of this test, i.e., the group of people examined and the tolerance allowed, may vary depending 
on the purpose of the calibrated model.  
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4 Analysis of the Relevant Calibration Methods 

This chapter constitutes the main body of the study. We will describe several possible approaches to 
calibration, including their main features, information on whether they are used in existing models or 
discussed in the literature, and considerations for their implementation in the current NEMO model. 

The following calibration methods will be described: 

1) Calibration by residual population 

2) Calibration by iterative model runs 

3) Refinement of average values 

4) Multiplicative scaling 

5) Sidewalk method 

6) Alignment by sorting 

7) Bi-proportional scaling . 

The methods can generally be divided into two categories depending on where the calibration takes 
place. The first option is to calibrate solely by adjusting the input parameters; the second option is to 
make adjustments during the run itself based on random events realized so far. The key disadvantage 
of the second category is that these methods necessarily distort the probability distribution of individual 
variables compared to the distribution based on the population characteristics as described by the input 
parameters of the model. Nevertheless, the practical application of these methods prevails over the 
methods of the first group to such extent that O‘Donoghue and Li (O'Donoghue, et al., 2014) only work 
with the second group in their study on calibration methods. The key advantage of these methods is 
their relative straightforwardness and, in case of the more sophisticated ones, a guaranteed result. Cal-
ibration of input parameters, on the other hand, can be a very complex process involving several pre-
paratory runs of the model and uncertainty as to whether a satisfactory solution will eventually be found. 

A list of calibration methods, which were referred to above, follows. The list starts with methods based 
on calibration of input parameters (the first group from the previous paragraph). Before we address the 
calibration methods as such, however, we will describe the preparatory steps that can help achieving 
initial approximation of two projections without using any sophisticated methods. 

The description of some methods is based on Deloitte experience in creating real microsimulation mod-
els: we have previously created microsimulation models of state pensions for clients in four countries. 
In some cases, we are not authorized to disclose the name of the client in the study; for this reason, the 
method description will not include identification of the country and model name.  

4.1 Preparation for Calibration 

Chapter 3.1 suggests that calibration should consist of two stages: preparation phase, where both pro-
jections are approximated in variables that can be aligned by simply taking over the inputs and that, 
simultaneously, affect all other values, and the phase of calibration procedure, which uses more complex 
methods described later in this study. In this chapter, we will describe how to take over the inputs so 
that the most significant approximation occurs during preparation. We expect all external projections to 
use very similar inputs and therefore the procedure for them will be very similar. That is why we will 
focus on the example of the AWG and the Czech Fiscal Council projections.   

Mortality and disability rates 

Each population projection draws from a certain mortality table. We want to adopt this table. Even if we 
are unable to acquire it directly from the authors of  the external projection, it can be easily calculated 
once we know the number of persons for each cohort in each calendar year. The mortality tables used 
for both the AWG projection (taken over from EUROSTAT) and the Czech Fiscal Council projection 
(taken over from the Czech Statistical Office) are publicly available. 

In addition, we will focus on cohort disability rates, which are the starting point for the number of disability 
pensions in both external projections and are calculated as a ratio of disability pensioners to the total 
population. Obtaining relevant data for the calculation is not a problem; data on the number of disability 
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pensioners and the size of population at a given age either serve as input to the projection (AWG) or 
are publicly available (EUROSTAT, CSO, CSSA). Thus, we will align the initial numbers of pensioners 
receiving disability pension.  

The probability of a new disability is represented by the MORB_RATE variable in the NEMO model and 
can easily be calculated from the AWG projection inputs as a ratio of the number of new disability pen-
sions to the population reduced by disability pensioners already existing in the given age group. We 
expect that the number of new pensioners aggregated with the number of last year’s pensioners who 
did not die will exceed the number of pensioners predicted by the projection in the current year. Based 
on the difference, we will determine the probability of disability termination. 

In case of the Czech Fiscal Council projection, we do not have data on the number of new pensioners 
receiving disability pension; we only have their total number. As a result, we will maintain the same 
probability of disability termination as in the normal runs of the NEMO model and determine the proba-
bility of incidence so as to match the total numbers of disability pensioners in both projections. 

The probability of change in the disability degree will be calculated in a similar way.  

Birth rate 

The birth rate assumption enters the NEMO model projection in two ways. On the one hand, the new-
borns whose life path is then subject to modeling enter the calculation each year. These persons are 
included in the database of model points and, in the preparation of model points, their parameters, 
including their number, are also determined; therefore, for an approximation to an external projection, 
the relevant assumption has to be inserted in the model point creation procedures. In addition, the prob-
ability of a child being born is part of the projection itself. This is also based on the birth rate projection, 
which is used as one of the input tables in the model. All data including birth rate can therefore easily 
be taken over.  

Initial population 

We assume that the initial numbers of employees and pensioners (of all types) and the total initial pop-
ulation will correspond between the two projections, as the current state of these variables is known 
from the CSO and CSSA data. If there are significant differences, it is possible to randomly select some 
persons from the inputs of the NEMO model and remove or duplicate them (the selection should be 
based on age and education). However, the utility of a projection using such modified data is question-
able - in such case, we recommend, first of all, to examine the grounds for the difference in the initial 
data and the extent to which their existence will affect further calculations. 

Bigger differences may arise in the numbers of parental leaves, students, the unemployed and inactive, 
as detailed statistics are not available for these data and the distribution of persons among these groups 
may not be clear. In such case, we will again randomly select the appropriate number of persons and 
reassign them to another status, so that the representation of persons in each status corresponds to the 
external projection. Based on an expert decision, we can formulate several assumptions for this reas-
signment; we may, e.g., decide that newly created students should not have previous work experience. 
Concerning younger people especially, working with persons with no history in the NEMO model points 
should be sufficient for the task of reassigning people among these groups. 

However, the only such state contained in the AWG projection or the Czech Fiscal Council projection is 
the number of the unemployed in AWG's work. Therefore, adjusting inputs in this way should rarely be 
needed.  

Number of pensioners 

The AWG projection assumes that each person will retire on the day he or shereaches the so-called 
effective retirement age. However, we want to adjust the average retirement age to best match the 
mentioned effective retirement age, but, at the same time, to maintain the number of persons who decide 
for early, or postponed retirement. 

We will start out with the results of the NEMO model before calibration (e.g. the results regularly reported 
by the MoLSA). From the number of new pensioners in individual years we will calculate the average 
retirement age for individual cohorts (each cohort is assigned a unique SPCODE also for the basic run 
in order to be able to sort the results by cohort). Furthermore, for each cohort and each calendar year, 
we will determine the rate of retirement observed in the model (as the ratio between the number of new 
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old-age pensioners and the initial number of non-retired persons) and compare it to the retirement prob-
abilities entered to the model. The observed probabilities will be lower because the probability entered 
in the model does not apply to all persons not yet receiving an old-age pension, but only to those who 
have already reached the required insurance period. There, we will calculate the size of the population 
to which the probabilities of retirement were applied – i.e. the size of the population eligible for retire-
ment.  

If we are permitted to manipulate the statutory retirement age, we will change the retirement age in the 
retirement.fac table by the number of years equal to the difference in the average actual age of retire-
ment between the model and the AWG projection. We then set the probabilities of early retirement and 
postponed retirement so that after their application to the population that has met the statutory require-
ments in the given calendar year, we receive the same numbers of persons who retire at an age different 
from their retirement age as those observed in the basic run. 

If the user wishes to maintain the retirement age because the value is strictly defined by law, we can 
omit the above step and only work with the probabilities of retirement, at the likely cost of the need to 
extend the table of probabilities of retirement to include other possible differences between pensionable 
age and the actual retirement age.  

We will take similar steps in relation to the Czech Fiscal Council projection. We will set the statutory 
retirement ages in accordance with the applicable legislation, only we will not consider the number of 
children of each woman and will (consistently with the projection) use the value applicable to a woman 
with two children according to the law. Similarly to the AWG projection, we will determine the number of 
persons who have reached eligibility to retire in the NEMO model (depending on the calendar year and 
the year of birth), and set the probabilities of early retirement, regular retirement, or postponed retirement 
so as to get the numbers of new pensioners projected by Czech Fiscal Council.  

Please note that in this manner, we will only achieve approximate alignment. The probability of retire-
ment interacts with employment, as the change in employment will also change the periods of insurance 
of individual persons, and hence the moment of eligibility to retire. Thus, even if we reach a perfect 
alignment in the first step, we will break it again as soon as we calibrate employment. Therefore, we will 
repeat this adjustment once again after having calibrated employment and unemployment in order to 
improve the alignment.  

4.2 Calibration by Residual Population 

  Method Description 

In some cases, the population captured by the model can be divided into several groups for which infor-
mation with varying level of details is available. In a situation where there is reliable data on certain 
subpopulations and the overall result needs to be adjusted, it is achievable by calibrating the persons 
from groups with greater degree of uncertainty. 

This method was used by Deloitte to calibrate mortality in a microsimulation model of one of their clients' 
retirement plans. This model considers the beneficiaries of various types of benefits separately and 
differentiates some of their input assumptions, including mortality. At the same time, there is a group of 
persons who have never been included in administrative records because they are participants of other 
pension schemes (e.g. members of armed forces). The mortality of these persons was determined so 
that its aggregate with the mortality of other groups corresponds to the mortality of the total population 
derived from external statistical data.  

In its simplest form, this method is very straightforward. If, for example, 𝑥𝑖 is the value of a variable in 

the group 𝑖 (e.g. mortality at a certain age) and, together, we have 𝑛 groups, of which we know the value 

of the variable for all but the last, and if 𝑁𝑖 are the numbers of persons in each group, 𝑁 the total number 

of persons and 𝑥 the total value of the variable for the whole population (e.g. total mortality), then it holds 

𝑁𝑥 = ∑ 𝑁𝑖𝑥𝑖

𝑛

𝑖=1

 

and the value for the last group can be calculated based on the following formula  



29 
 

𝑥𝑛 =
𝑁𝑥 − ∑ 𝑁𝑖𝑥𝑖

𝑛−1
𝑖=1

𝑁𝑛

. 

This procedure has two drawbacks. First, it can only be used with independent variables (i.e. only those 
for which there is no formula based on other variables in the model), and only with variables where it 
makes sense to divide the population into several groups whose members will all have the same value 
of calibrated variable (which is a reasonable assumption for e.g. mortality, but a considerable simplifi-
cation in case of a salary). Furthermore, this procedure per se does not guarantee that the calculated 
value will be realistic. If the values for other groups have already been derived with some degree of 
uncertainty, the individual deviations may add up and the last value may significantly deflect from ex-
pectation. Therefore, it is appropriate to set in advance the limits within which the resulting values should 
fluctuate, either in absolute terms or relative to other mortalities (we can e.g. assume that, at most ages, 
men will have higher mortality rates than women, and calibration should therefore not decrease the 
mortality of men below that of women). If the calibration renders a value outside the specified limits, we 
will need to go back to one of the previous steps (i.e. deriving inputs for other groups or obtaining the 
input data as such), because our data and set assumptions may not be consistent. 

A variation of this method can also be used to calibrate variables that should have a slightly different 
value for each individual (such as salary). First, we will calibrate the expected value of the variable for 
the complementary group according to the formula provided above and then we will differentiate this 
value to obtain the value for each individual using some other procedure. Some variation of the refine-
ment of average values described in Chapter 3 may be appropriate. 

So far, we have only considered a situation where there is a single complementary group; in its basic 
form, the method cannot differentiate a larger number of complementary groups. We can, however, 
consider a variant where for each complementary group we will determine the default value of the vari-
able of interest, in addition to the permissible limit, and establish an optimization algorithm that will try 
to find the values of the variable for all complementary groups so that  

• Each value found is within the specified limits; 

• The 𝑥𝑖 values in the complementary groups are approaching the initial values (measured, for 
example, by the squared deviation); 

• The formula is 𝑁𝑥 = ∑ 𝑁𝑖𝑥𝑖
𝑛
𝑖=1 .  

For example, Excel Solver is fully sufficient for such optimization. We need to remember that the result 
of this variant of the calibration method will strongly depend on provided input – the limits and the initial 
values.  

  General Evaluation 

In order to be able to better discuss the advantages and disadvantages of this calibration method, we 
need to distinguish between two modes of use. In the first one, we want to calculate the value of the 
variable in only one group. In the second mode, we need to calculate the values for multiple groups.  

Single group calibration 

If we know the values of all groups but one, this method provides a straightforward means of calculation 
of the last value. The calculation is simple, takes almost no time and does not require any inputs other 
than the sizes of all groups and the known values of the reviewed variable. 

The drawback of this method is the possible error accumulation. The values that we now consider known 
have probably been derived by statistical methods and may therefore deviate from the real value. In the 
calculation of the last value, these deviations may sum up to a considerable amount. It is therefore 
necessary to examine the logical outcome of this method. 

The advantage of this method is that it accurately maintains symmetry. If, instead of the value of the last 
group, we calculate its complement to 1, we follow the following formula for the calculation, which is 
obviously equivalent to the calculation of the original value.  

1 − 𝑥𝑛 =
𝑁(1 − 𝑥) − ∑ 𝑁𝑖(1 − 𝑥𝑖)𝑛−1

𝑖=1

𝑁𝑛

=
𝑁𝑛 − 𝑁𝑥 − ∑ 𝑁𝑖𝑥𝑖

𝑛−1
𝑖=1

𝑁𝑛

= 1 −
𝑁𝑥 − ∑ 𝑁𝑖𝑥𝑖

𝑛−1
𝑖=1

𝑁𝑛
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Multiple group calibration 

In the second case, assuming unknown values in multiple groups, the situation becomes more complex 
from mathematical point of view. It leads to a non-linear programming task which, in general, may not 
have a solution, or may lead to a solution that is not unique. In addition, the calculation under this method 
may be rather complicated. The drawback is that the time complexity cannot generally be determined 
in advance.  

In this case, too, the deviation of values from the known groups accumulates. 

Another possible disadvantage of this method is the need to define both the initial values of the cali-
brated variable for each group and the limits that the calibrated values must not exceed. In certain cases, 
these limits may be clearly defined (for example, we can certainly assume that male mortality is higher 
than female mortality), but the method will be very sensitive to changes in all these parameters. If we 
wrongly determine solution feasibility limits, we may not find the solution, even if it exists. Or, the calcu-
lated value will not make any logical sense.  

The advantage of this method is that if the individual groups are independent and their relationship in 
limit constraints is at most linear, the calibration using the residual population is symmetrical. Unfortu-
nately, in case of more complex constraints, symmetry is not maintained. For example, the following 

constraint maintains symmetry: 𝑥𝑖 ≤ 5 or 𝑥𝑖 + 3𝑥𝑗 ≥ 6. However, non-linear (i.e. square, exponential, 

etc.) constraints break symmetry. 

Shared properties 

In Chapter 4.3, we provide two indices used to measure the quality of the calibration methods; unfortu-
nately, neither of them make much sense reviewing for the calibration by residual group. 

To use the target deviation index (TDI), we would need to know the number of actual events in the entire 
population and compare it with the number of simulated events. However, the MoLSA does not possess 
information on the actual number of events in the groups in which we calculate the variable values. 

It is important to note that this method does not at all take into account explanatory variables other than 
the group in which each individual is included. 

The logical limits that we determine (whether for one or more calculated values) ensure, in most cases, 
that zero value is maintained at zero probability. Nevertheless, specific cases may arise where this 
feature is violated. Imagine, for example, that we model the third pillar of the pension system with both 
the amount contributed by certain groups and the total amount of contributions to the third pillar. This 
method would then attribute the same proportion of the missing amount of contributions to all those for 
whom the information is missing. That would probably be a mistake, as we have reasons to believe that 
many of these individuals did not contribute at all, rather than believing that each of them contributed 
the same small amount.  

Summary of strength and weaknesses 

One of the main advantages of this method is that, for the determination of a single value, the calculation 
is very fast and usually maintains symmetry. 

The main disadvantages are the consideration of only one explanatory variable, namely the group of 
the individual. If we want to calibrate several groups at once, we need to obtain more information and 
initial values, the method may not find a solution and, in case of more complicated constraints, it may 
run slowly. 

 Suitability for Application in NEMO 

Distributing population into groups based on a particular attribute can be done in the NEMO model. At 
the beginning of the projection, these groups are defined; then, after simulating life paths, the model will 
assign an individual to the corresponding group. After simulating the paths of the last individual, the total 
simulated population is distributed to predefined groups for which the values of important variables are 
known. 

Then the following considerations need to be discussed: 

• the number of constructed groups, 
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• selection of (a) group(s) to represent a complementary group for the application of the de-
scribed calibration method; and 

• the limits of feasible values. 

It should be noted that it is not possible to classify one individual "twice", i.e. to define separate sets of 
groups at the beginning of the projection. For example, it is not possible to initially define groups accord-
ing to sex (male, female) and separately according to age groups, and expect the model to include an 
individual once in a group according to sex and once in another group according to age. If we need to 
classify the population into n age groups according to sex, we need to create  2*n groups to which 
individuals will be assigned at the beginning of the projection, i.e. one group for each sex-age combina-
tion. 

The upper limit for the number of groups should also be given consideration. In the NEMO model, the 
maximum allowance for categorization is 10,000 groups (upper limit of the SP code), which is not opti-
mal. More groups lead to a significant slowdown in the model run, which lasts at least one day anyway. 
If we wanted to divide the population by sex, such operation would not burden the model too much. 
Concerning age groups, we would have to discuss the optimum number not only in terms of the com-
plexity of the model run, but also in terms of reliable interpretation of the results; allocation of individuals 
to e.g. five-year age groups is less informative than allocation to actual age groups, but in terms of the 
number of groups, this categorization is more acceptable for the model while still providing sufficiently 
detailed information about the reviewed variable and its distribution (even in the sex-age combination). 

The core of the calibration method is the selection of the group that will represent the complementary 
group and the value that will be calibrated to the calibration target by applying the method. In general, it 
should be the group with the highest degree of uncertainty; e.g. in modeling the amount of salary by age 
groups, this could be the group of working students aged 15-20, for which we usually have a low number 
of records. Another option for selection of the complementary group is to choose the one that most 
differs from the external projection values. The choice of the complementary group is not always easy 
or straightforward and requires expert judgment supported by sufficient analysis. Then, the complemen-
tary group would be calibrated to the desired target by a simple calculation using the above formula, 
while the necessary input values representing the values of total population would be imported as con-
stants from the table. By comparing the calculated and the desired value of the complementary group, 
the calibration constant would be calculated and stored as a new value, in the table of constants that is 
imported on input. Then the model would run again, and at the end of the projection, the complementary 
group would be multiplied by the appropriate calibration constant. This approach to calibrating values 
would also be useful as an alternative to the average salary correction method used so far, which is 
represented by the “residual component” in the NEMO model. 

After selecting the complementary group, it is important to verify that the calculated value falls within the 
interval of feasible values, which was determined in advance. This verification can be easily imple-
mented into the NEMO model - the limits of the feasible values are read by the model upon entry as 
constants from the table. 

The calibration method using the residual component can also be used to calibrate input variables in 
the event that rather unreliable or no data is available for a group/category. This approach was used in 
a model of Polish state pensions, where input mortality was calibrated for specific population groups. 
The advantage of this application is avoiding to run the model twice. 

Finally, the simulated population can also be categorized using a time-varying variable (e.g. the age 
group, the current working state). In such case, the possible transitions between groups have to addi-
tionally be defined in the model using so-called extended formulas. After each simulation, the states in 
each group (entry/leaving of individuals) need to be manually recorded and, at the end of the whole 
projection, the final table can be printed. For calibration purposes, however, there is no point in further 
exploring this option. 

 Final Evaluation 

The method supplies variable values for population groups for which less reliable or no data is available. 
Therefore, it only makes sense to use it in such cases. It only works at an aggregate level (e.g. death 
probability of persons in a group, average salary in a group). It can be used to prepare assumptions 
prior to the first run of any model, or to carry out the calibration based on the results of the preparatory 
run. 
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4.3 Calibration by Iterative Model Runs 

 Method Description 

The basic idea behind this method is that the user will run the model with default inputs, adjust the inputs 
based on the results, and repeat this process until the desired approach to the target values is achieved. 
The main challenge of the method is the efficiency of the process. 

The natural solution is to perform calibration on a simplified model that will only cover those relationships 
that are subject to calibration. For example, this process is used to calibrate the labor market in the 
government pension model of one of Deloitte‘s clients.  

Case study – use of the method in Deloitte’s client model  

Each person in this model belongs to one of many possible statuses. Distribution into statuses is very 
fine, each of the natural main statuses – e.g., employed, unemployed, inactive, farmer or student – has 
several variants; there are 55 statuses in total. Transitions occur based on a transition matrix (i.e. a set 
of probabilities that a student will get a job, an employee will resume studies, an inactive person will take 
parental leave, etc.). The employment and unemployment rates for individual years and age cohorts are 
used as the calibration target. Another requirement for calibration is to maintain the entire transition 
matrix proximate to the state prior to calibration (i.e. to change individual transition probabilities as little 
as possible). 

The initial stage of calibration is a preparatory run in Prophet. On the basis of this run, the initial transition 
matrix is determined by simply dividing the number of persons in the respective statuses at the beginning 
and at the end of the given period. We have a total of 55 × 55 transitions. 

This matrix will be adjusted during calibration to approach the calibration targets. However, we will not 
include all its components in the process, as some transitions are driven by more complex mechanisms 
than the transition matrix can sufficiently cover:  

• Some transitions in the model are the result of deterministic development and their occurrence 
is not affected by randomness (at the time of occurrence). An example might be the transition 
between sick and healthy employee in the MoLSA model, as the duration of the sickness is 
determined randomly at sickness commencement while the termination of illness is no longer 
subject to randomness. There is no meaning in calibrating such cases because they behave 
differently in the main and in the complementary model. 

• Some transitions occur very rarely because they affect only a small proportion of the popula-
tion or because their probability is very low. The number of such cases cannot be stable in the 
model and, consequently, its calibration makes no sense.  

We will not change the parameters affecting transitions between these two groups within calibration. 
Nevertheless, for the calibration of other transitions, their existence must be acknowledged; for this 
purpose, the probability taken from the Prophet preparatory run will be used and will not be further 
adjusted. 

The calibration itself takes place in a complementary model in MS Excel. The initial numbers of persons 
in each status, divided by sex and age cohort, are used as inputs. The model then includes a transition 
matrix for each combination of calendar year, age cohort, and sex. The input values of these matrices 
are taken from the Prophet preparatory run. Based on these inputs, the model projects the development 
of the number of persons in each status and compares the squared deviation of the employment and 
unemployment rate from the calibration target for each year. The model thus does not include calculation 
of the amount of benefits or verification of statutory requirements.  

The file is finally optimized using Excel Solver. Non-linear GRG (generalized reduced gradient) is used 
as the optimization algorithm; it is a standard optimization method using (like many other optimization 
algorithms) partial derivations of the minimized function. The result is a set of transition matrices de-
pendent on the cohort, calendar year and sex. Importing these matrices into the Prophet model and 
running the model subsequently will yield calibrated results.  
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Other specifics of the method 

In general, it is not guaranteed that the calibrated run will actually meet the calibration target - transitions 
that have been excluded from calibration may affect the results differently compared to the simplified 
method that was entered in the MS Excel model. The results should therefore be thoroughly tested. It is 
necessary to check both the actual deviation of the calibrated variables from the calibration targets and 
the impact of calibration on the other variables. 

If satisfactory calibration has not been accomplished, the entire process can be repeated. It depends on 
the expert judgment of calibration analysts whether to use, as the new input for the optimization algo-
rithm, the model results after the first calibration or the results of a completely new preparatory run (two 
identical preparatory runs always give the same result, but it is possible to change the order of persons 
in the list of model points, thereby intentionally disrupting control over the realization of random variables 
in the simulation). The decision will mainly depend on how much the calibration target was approached 
and how much distortion in the distribution of other variables was caused by the calibration so far. 

The difficulty of the task greatly depends on the complexity of the calibrated process and the number of 
calibration targets. In the Deloitte project described above, only two target variables were monitored, 
namely the employment rate and unemployment rate; still, it was not trivial to achieve satisfactory cali-
bration. Furthermore, the method relies on the existence of a sufficient number of transitions that can 
be calibrated, i.e. for which the number of persons can be expressed as a percentage of the initial 
population and is spared the necessity of meeting statutory requirements.  

Since calibration is performed outside Prophet, the calibration model can generally be created in a num-
ber of application tools. We consider MS Excel to be a reasonable compromise among the ease of use, 
the ability to replicate important parts of the model in Prophet and the availability of optimization proce-
dures. While e.g. R would certainly allow for a tool that would replicate Prophet more precisely or offer 
more optimization algorithms, its creation would probably require far more work with uncertain added 
value. 

An auxiliary model may not be necessary to calibrate certain specific microsimulation models, but in 
general cases it cannot be avoided. If one wants to use the main model for calibration, it should run the 
calculation in a sufficiently short time, as it will have to be run many times during the optimization. An-
other requirement is that the main model can be subject to an automated optimization procedure, i.e. 
there must be a tool capable of running the model, analyzing its results, adjusting the model's assump-
tions based on the results and repeating the process. Generally, such a tool is not easy to implement, 
unless the model has been created in a language with easily accessible optimization libraries (such as 
R).  

An important question of this method is the degree of simplification that will be introduced in the auxiliary 
model. In the case described above, the model was simplified to the greatest extent possible - it was 
limited to labor market forecasting and calibrated only transitions with a simple form. The advantage of 
such significant simplification is the relatively easy implementation of the auxiliary model and its com-
prehensibility. If the auxiliary model were to be more complex, we would have to make additional as-
sumptions - for example, if we wanted to calibrate the transition of employees to retirement, we would 
have to determine the percentage of employees with enough time worked to become eligible, ensure 
consistency of this assumption with the other assumptions used in the auxiliary model and consider it in 
the interpretation of results. We therefore recommend to always start with the simplest possible variant 
and introduce more complex functionalities to the auxiliary model only in exceptional cases.  

 General Evaluation 

The major disadvantage of this method is that it constitutes a purely empirical exercise. There is no 
guarantee that the calibration will achieve the objective, and success or failure can only be evaluated 
after the model has been run in Prophet with the calibrated inputs. For this reason, the method needs 
to be tested for functional accuracy, and each individual calibration has to be thoroughly validated. 

There is some hope though, as the client for whom this method was originally created by Deloitte, dealt 
with a task very similar to the task currently pursued by the MoLSA, i.e. calibration of a model in Prophet 
with basic structure similar to that of the MoLSA model (shifting time in monthly steps, having each 
individual transition between certain states based on a transition matrix, while verifying which states are 
acceptable in the given situation; all other calculations are based on current and historical states). In 
both cases, there are transitions that cannot be calibrated using this method because they depend on 
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other legislative conditions (e.g. a person can only retire after having worked for a certain number of 
years). The main difference is that the MoLSA model contains a significantly lower number of statuses. 
We can therefore hope that the difference between the situation of the MoLSA and the original applica-
tion of this method is not such that the calibration could not give satisfactory results.  

Potential issue of this approach is its stability. The algorithm will generally only find a local minimum of 
the problem, so admittedly, a small change in the calibration input parameters will lead to different re-
sults, which can yield a different projection when run in Prophet. The difference between alternative 
projections will not be significant (since we always verify that the results of a calibrated run do not differ 
much from the original ones), it may, nevertheless, hinder the interpretation of results and diminish con-
fidence of other users in the calibrated projections. 

In addition to the computation demand, another disadvantage leaks in the inability to maintain symmetry 
of the task. The optimization algorithm is generally unable to work with symmetry. 

Another problem may arise in maintaining zero transition probabilities. The condition for maintaining 
them must be explicitly included in the optimization algorithms, which further increases the complexity 
of the whole system. 

It should be explicitly mentioned that since this method only modifies the input values, it fully maintains 
relationships between the explanatory variables and their responses, thus well maintaining the con-
sistency of inputs and results.  

 Suitability for Application in NEMO 

As the calibration itself takes place in an auxiliary external file, a significant part of the implementation 
issues is eliminated. However, certain complications cannot be completely avoided. 

The transition probability matrices that represent the input for calibration are obtained in the model by 
initially defining the groups for which the model will record quantities during the run, and, at the end, 
recording quantity relating to December of the given year for each group, i.e. after completion of the run, 
the model will create a table of quantities at year-end, with predefined groups in rows and calendar years 
of projection in columns. These groups will be a combination of the year of birth of the individual, their 
sex and all possible transitions between statuses (e.g. transitions: employed-childcare, employed-stu-
dent, student-student, student-unemployed and so on).  

Then the final transition matrices for calendar year x are obtained by dividing the number of persons in 
the respective states in year x-1 by the number of persons in year x. The transition matrices thus pre-
pared enter the auxiliary model, in which the values are calibrated. 

The result of the calibration is again a set of transition matrices. Their import to the NEMO model and 
re-run will yield results that are already calibrated. When subsequently converting the calibrated transi-
tion matrices back to Prophet, we need to deal with the transformation of annual probabilities to monthly 
probabilities, but also to consider that the model works with two types of transition probabilities – those 
associated with the event that causes the change of state and those that are independent of the event. 
There are also instances in the model where some transition probabilities for a given individual are set 
to zero until the expiry of the predetermined period in which the individual has to remain in the given 
state (e.g., a sickness). The ways to deal with these complications are described in detail in Chapter 
4.8.3. However, this is a non-trivial task. 

 Final Evaluation 

This method requires a complex external tool, does not guarantee finding a solution, and even if a so-
lution is found, it will not be generally stable. In addition, the computation time itself may be quite high. 
The method of calibration by iterative model runs is suitable for calibrating transition probabilities, but 
cannot be used for calibrating salaries. Its main advantage is the ability to simultaneously calibrate a 
large number of transition states. If we calibrate one variable only, the use of a simpler method is pref-
erable.  
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4.4 Refinement of Average Values 

 Method Description 

This method is again based on adjustment of the model’s input parameters. Its primary purpose is to 
introduce individual variances into population in which, without the use of this method, all persons would 
have the same value of the adjusted variable. It does not necessarily involve a calibration in the sense 
of a shift of the expected value. A prerequisite for this procedure is the knowledge of the resulting prob-
ability distribution of the variable we want to adjust (or at least the existence of an a priori assumption 
on the distribution).  

This method was used by Deloitte to calibrate salaries in a microsimulation state pension model for one 
of their clients.  

If the variable that is being adjusted does not depend on the individual's history, the procedure is simple. 
It is sufficient to simulate a random value from the desired distribution for each person (this distribution 
is known in advance and has the correct expected value). Such straightforward manner can be used to 
determine, for example, the initial salaries of persons entering the labor market. Although these depend 
on attained education and the age of commencement of work, once we classify people into groups 
according to these variables, the specific value of their salary is completely independent (and thus in-
dependently simulated from the distribution relevant to that group).  

A more complicated case arises if the adjusted variable is subject to other criteria - for example, when 
modeling the development of salaries, we should take into account the given person’s previous year 
salary and general prospects on the labor market, in addition to maintaining the calibration target for the 
expected value. Here we can distinguish between several options according to complexity. We will as-
sume that a percentile of the relevant distribution will be assigned to each individual. Let us recall, for 
example, if a person has a 60% percentile, this means that 60% of persons from the reviewed population 
have reached a lower value for that variable. 

In the first option, we will exclusively compare the distribution of the explanatory and dependent varia-
bles (e.g., the salary in year 𝑅 and the salary in year 𝑅 + 1) and assign each person such percentile of 
distribution of the dependent variable that corresponds to their percentile of the explanatory variable. 
We defined both distributions a priori when determining calibration targets. Succession of persons will 
therefore be retained - if person A had a salary higher than person B in year 𝑅, he or she will have a 

higher salary in year 𝑅 + 1 as well. We will use this method if we want to achieve a credible development 
of individuals (e.g. a person with a high salary in year 𝑅 will have a high salary in year 𝑅 + 1), but we do 
not require any randomness in the development. The initial position of a person may be random, if 
simulated from the first distribution, but all other positions are already fixed by that initial position.  

This approach is therefore as follows: on the basis of a person’s position within a certain group in terms 
of the first variable (e.g. salary in year 𝑅), we will determine the position of the same person within the 
same group in terms of a new variable (e.g. salary in year 𝑅 + 1). This is particularly useful if we monitor 
a certain determinate group over the entire period of projection - for example, if we are interested in the 
development of salaries of men with university education born in 1980. Nevertheless, the group does 
not necessarily have to be completely impermeable – persons who have found a new job may transition 
here or, on the other hand, persons who have died or who have e.g. been granted a disability pension 
may transition out of the group. Important is that the position of a person within the group remains the 
key parameter. 

Complications arise when we do not want to simulate some the new entrants to the group from the 
unchanged resulting distribution. An example could be a situation where someone returns to work after 
prolonged unemployment. If we neglected the effect of unemployment, we would assign such person 
the same percentile of salary they had before losing their job, or we would simulate a whole new value 
from the distribution that would not be modified in any way. We could take into account the unemploy-
ment by assigning the person a slightly lower percentile or by simulating from a distribution with higher 
probabilities of lower salaries compared to the original distribution. This would, however, distort the 
overall distribution of salaries in the population. The only solution is to make adjustments also to the 
persons who remain in the group, thus balancing the distortion. In our example, we would increase some 
persons’ salaries by one-time jumps. This adjustment must also be subject to random distribution; the 
development of the variable will no longer be deterministic, even for the persons in the group.  
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Thus, we come to considerations as to how to introduce random development of the career path to the 
method. The option to simulate each variable for each person at random, irrespective of the previous 
results, is not suitable, as there would be unjustified jumps in individuals’ life paths. (For example, a high 
salary in year 𝑅, low salary in year 𝑅 +1and high salary again in year 𝑅 + 2). In addition, the effect of 
unemployment referred to above would not be sorted out. Thus, we want to introduce randomness such 
that we can control it somehow. There are surely many ways to do this. We propose the following.  

Introducing randomness – option one 

Our inspiration for this method was the pattern used to allocate partners to persons in the NEMO model: 
an "ideal" partner for a person is identified according to certain criteria, and then the existence of such 
partner is verified in the model point database. If no such partner exists, another partner, the most similar 
to the ideal partner, is assigned instead. The method assumes that the database of possible partners is 
predetermined. In the NEMO model, one partner can be assigned to several persons; we will not use 
this simplification here.  

Similarly, in this calibration method, we will in advance determine a list of permissible percentiles of the 
target probability distribution to which a person can transition. Since the percentiles of any distribution 
are always uniformly distributed, we will choose the target percentiles 𝑞𝑖 as follows: if the total number 

of persons (and hence percentiles) is 𝑁, then 𝑞𝑖 =
𝑖

𝑁+1
. Thus, the distance of two neighboring percentiles 

is always equal to 
1

𝑁+1
 and the distance of the first percentile from zero and of the last percentile from 

one is 
1

𝑁+1
 as well. We do not include zero or one among the permissible percentiles, because some 

distributions may converge to infinity in these percentiles. 

We then assign one of these percentiles of the resulting distribution each person based on his or her 
initial percentile. Let us assume first that the initial value of the variable (e.g. the salary in year 𝑅, if we 

want to calibrate salary in year 𝑅 + 1) meets the condition that each person is in one of the percentiles 

𝑞𝑖 =
𝑖

𝑁+1
 and none of the percentiles is repeated within the initial distribution. Let us define a priori a 

discrete random variable 𝑋 that will determine the probability of a person staying in the same percentile, 
moving up a percentile, etc. The choice depends on the user’s expert judgment; a possible candidate is 
e.g. uniform distribution with the same probability of transition to all percentiles. A discretized version of 
the normal distribution (truncated for the highest and lowest percentiles that do not have enough neigh-
bors on one side) may be another suitable option for 𝑋. We will, step-by-step, work with each person 
and simulate the value from the distribution of 𝑋 that will determine his or her transition to the next state. 
We will reassign the person to the percentile that is determined by the initial percentile and the value of 
𝑋, while recording which percentiles of the target distribution have already been used. If we get a per-
centile for a particular person that has already been occupied, we will want to assign the nearest free 
percentile instead. Again, we have several options to choose this replacement. The simplest option is 
to solely rely on their order: if percentile 𝑞𝑖  is taken, we will first try to move the person to percentile 𝑞𝑖+1, 

if it is already taken, then 𝑞𝑖−1, 𝑞𝑖+2, 𝑞𝑖−2, etc. In other words, we will minimize the value |𝑞𝐼 − 𝑞𝑉|, where 
𝑞𝐼 is the "ideal" percentile, i.e. one that resulted from the distribution of 𝑋, and 𝑞𝑉 denotes available per-

centiles that a person can move to. This option is especially useful if 𝑋 is an even distribution with odd 
number of percentiles, where the middle one corresponds to the person's percentile in the initial distri-
bution (that is, the distribution that serves as a basis for calibration).  

A more complex option is to take into account the shape of the 𝑋 distribution. This, on the other hand, 
is reasonable to use if 𝑋 is significantly non-uniform, i.e. if the probabilities of the two neighboring target 
percentiles differ considerably. An example may be a discretized normal distribution with a low standard 
deviation. The probability of transition to neighboring percentiles using discretized normal distribution is 

shown in the figure below. From the percentile 𝑞𝑖 =
𝑖

𝑁+1
, we are most likely to move to percentile 

𝑖

𝑁+1
, or 

less likely to percentile 
𝑖+1

𝑁+1
 and 

𝑖−1

𝑁+1
 and so on; for sufficiently distant percentiles, the probability is zero. 
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Probability of transition to neighboring percentiles 

In this case, we confirm for all possible values of 𝑋, whether the person can move to the percentile 

determined by the realization of 𝑋 and its initial percentile. We exclude unfeasible values (i.e., those that 
are already occupied) from the distribution and will choose only from the remaining values for which we 
keep the probability proportion. This will ensure that a percentile that has not yet been occupied is se-
lected. We will only use the search for the closest available percentile as described for the previous case 
if transition to none of the percentiles that can be simulated on the basis of 𝑋 is feasible. We will then 
start the algorithm from the values which would come out  for the maximum and minimum realization of 
𝑋.  

So far, we have assumed that within the initial distribution, each person is in one of the percentiles 𝑞𝑖 =
𝑖

𝑁+1
. If this is not the case, because the values are based on real observations or because we have 

simulated them in a different way, we take the default values as an empirical distribution. Percentiles of 
empirical distribution are always the same distance from each other; our only problem is that the highest 
value has percentile 1 and the lowest one has percentile 0. Therefore, to calculate the percentiles of the 
empirical distribution, in this case we extend the set of observations by two auxiliary cases, one ex-
tremely high and one extremely low. Percentile 0 and 1 will then acquire these auxiliary cases, and to 

real observations we assign the percentiles 𝑞𝑖 =
𝑖

𝑁+1
 (for specific individuals in the model, 𝑖 is still con-

sidered from the range of values 1 to 𝑁) that meet the requirements stated above.  

If the population size changes between determining the initial and target percentile (e.g., new people 
will enter the labor market in the new period), we first calculate the initial percentile for each person, 
which it would have had if the initial population had the same count as the target population, by simple 
linear scaling and rounding. For example, let us suppose that we calibrate the salary at time 𝑅 + 1 when 

the size of the population is 𝑁𝑅+1, on the basis of the salary at time 𝑅 when the size of the population 

was 𝑁𝑅. Then the 𝑖th richest person at time 𝑅 was, in terms of salary distribution, in percentile 
𝑖

𝑁𝑅+1
. The 

order of the new percentile in the new distribution will then equal  

𝑖
𝑁𝑅+1 + 1

𝑁𝑅 + 1
, 

rounded to the nearest integer multiple of fraction 
1

𝑁𝑅+1
.  

Introducing randomness – version two 

So far, we have assumed that we know the target distribution for modeling the transition from one per-
centile to another. Let us now focus on the case where, in addition, we assume the distribution of the 
behavior of the transition itself (i.e., by how much the target percentile will increase or decrease).  

Let us choose a random variable 𝑋 on which we will rely in the transitions between the percentiles. We 

require that 𝑋 have the following properties: 

• Expected value of 𝑋 is zero; 

• The range of 𝑋 is any subset of the interval [
−1

2
,

1

2
]; 
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• 𝑋 is symmetric, i.e., for any 0 < 𝑎 < 𝑏 <
1

2
, it holds that 𝑃[𝑋 ∈ (𝑎, 𝑏)] = 𝑃[𝑋 ∈ (−𝑏, −𝑎)]. 

We will denote the realization of random variable 𝑋 by a small letter 𝑥.  

Let 𝑈 be the variable which determines the starting distribution, i.e., the covariate. The relevant starting 

percentile for person 𝑖 will be denoted by 𝑢𝑖 (e.g., percentile of salary in year 𝑅). Similarly, let 𝑉 be the 

target random variable and 𝑣𝑖 its percentiles, i.e., values we wish to achieve by the calibration (in this 

case, percentile of salary in year 𝑅 + 1). When determining value 𝑣𝑖, we would like to use the formula 

𝑢𝑖 + 𝑋.  

However, value 𝑢𝑖 + 𝑋 cannot be directly used without other modifications because for some realiza-

tions of variable 𝑋, the sum 𝑢𝑖 + 𝑋 will not lie in the interval [0,1]. Therefore, we create a new random 

variable 𝑋𝑖 (this variable will be different for each person) and set 𝑣𝑖 = 𝑢𝑖 + 𝑋𝑖. We define it as follows:  

• If the sum 𝑢𝑖 + 𝑋 lies in the interval [0.1], we do not make any adjustment, i.e., we put 𝑋𝑖 = 𝑋;  

• If the sum 𝑢𝑖 + 𝑋 is negative, we set 𝑋𝑖 such that 𝑢𝑖 + 𝑋 =  −(𝑢𝑖 + 𝑋𝑖), i.e., we put 𝑋𝑖 = −2𝑢𝑖 −
𝑋; 

• And finally, if the sum 𝑢𝑖 + 𝑋 exceeds 1, we set 𝑋𝑖 such that 𝑢𝑖 + 𝑋 − 1 =  −(𝑢𝑖 + 𝑋𝑖 − 1), i.e., 
𝑋𝑖 = −2𝑢𝑖 − 𝑋 + 2. 

We created variable 𝑋𝑖 so that the results are uniformly distributed; we will justify in due course that this 
really holds. However, the fact that the sums 𝑢𝑖 + 𝑋𝑖 so defined lie in the interval [0,1] will be shown 
immediately. 

Let us recall that variable 𝑋 belongs to interval [
−1

2
,

1

2
]. In addition, the values of the percentiles 𝑢𝑖 are 

always in the interval [0,1]. Therefore, the highest possible value of the sum 𝑢𝑖 + 𝑋 is 
3

2
 and the lowest 

is 
−1

2
.  

If 𝑢𝑖 + 𝑋 is negative, this expression will assume value greater than 
−1

2
. Therefore, the expression 𝑢𝑖 +

𝑋𝑖 = −(𝑢𝑖 + 𝑋) will certainly be in the interval [0,1].  

We will use a similar argumentation also when 𝑢𝑖 + 𝑋 is greater than 1. This expression clearly has 

values between 1 and 
3

2
, and therefore 𝑢𝑖 + 𝑋𝑖 = −(𝑢𝑖 + 𝑋) + 2 again belongs to interval [0,1]. 

As mentioned above, we define the calibrated variable, shortly written, as follows: 

• 𝑣𝑖 = 𝑢𝑖 + 𝑋𝑖 = 𝑢𝑖 +  𝑋, if 0 ≤ 𝑢𝑖 + 𝑋 ≤ 1,  

• 𝑣𝑖 = 𝑢𝑖 + 𝑋𝑖 = −𝑢𝑖 − 𝑋, if 𝑢𝑖 + 𝑋 < 0 and 

• 𝑣𝑖 = 𝑢𝑖 + 𝑋𝑖 = 𝑋𝑖 = 2 − 𝑢𝑖 − 𝑋, if 𝑢𝑖 + 𝑋 > 1.  

The random variable that we want to calibrate has a set [0,1] for these options; each individual can 
therefore be assigned a percentile from the target distribution. Each person can transition to a range of 
different states, and there is generally no guarantee that the expected value of the shift will be zero for 
each individual. However, this is a necessary consequence of our requirements: the richest person can 
only get to a worse position in terms of percentiles, and if we want him not to remain the richest through-
out the projection for sure, the expected value of the change in his or her percentile must be negative.  

At this point we could stop and distribute the resulting values of the individual according to their respec-
tive values 𝑣𝑖 into N quantiles step by step just like we did in the previous version of the method. But 

that would be an unnecessary extra step. It turns out that the values 𝑣𝑖 are uniformly distributed over 

the interval [0,1], i.e., if we choose any subinterval [𝑎, 𝑏], the probability that a person (of whom we have 
no initial information) has a calibrated variable in this interval equals 𝑏 − 𝑎. Equivalently, every two in-

tervals of the same length contained in the interval [0,1] have the same probability that the resulting 
variable will belong to them (if we don't know anything about the initial state of the person). Therefore, 
values 𝑣𝑖 can be used as a result of the calibration without any further adjustments.  

We will now illustrate this procedure with an example in which we substitute X with a distribution that 
satisfies the above conditions (symmetry, range of values from minus to plus one-half, and zero ex-
pected value), we will simulate the values of the uniform distribution over the interval [0,1] and realiza-
tion from the distribution of X, and check whether the result is in fact uniformly distributed. This example 
was created in the R software and its code is provided in Appendix B.1.  
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We use truncated normal distribution with values in the interval [
−1

2
,

1

2
] with expected value 0, unit stand-

ard deviation, with the following percentile function and probability density:  

 

 

Histogram of truncated normal distribution (left), percentile function of truncated normal distribution (right) 

It is therefore a symmetric distribution that strongly prefers values around 0. However, if we compare 
the percentiles of the resultant distribution to the percentiles of the uniform distribution in the QQ-plot, 
we find that they match very well. (If two distributions perfectly match, all their quantiles, especially the 
percentiles, match as well. The QQ-plot compares the quantiles of the two distributions and, when per-
fectly matched, displays the direct proportion function 𝑦 = 𝑥. The curve in the chart below approaches 
direct proportion.)  

 

QQ-plot of distribution created from the normal distribution 

We will use a formal statistical test to verify the uniformity of the resulting representation. We specifically 
choose the Kolmogorov-Smirnov test which is based on the comparison of (empirical) distribution func-
tions. As the null hypothesis, it chooses that the values 𝑣𝑖 come from uniform distribution. The resulting 
p-value is about 0.8 which means that the null hypothesis is resolutely not rejected by the test. The 
results can therefore be interpreted as a confirmation of the uniformity of the distribution.  

The script that accompanies the task contains tests for two other choices of the 𝑋 distribution, all of 
which have lead to the same conclusion.  

 General Evaluation 

In this case, too, we will deal with properties for the first and second version of this method separately.  
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Version without randomness 

First, let us comment on the version that (apart from the initial distribution) does not include randomness 
at all.  

Due to the deterministic definition of the vast majority of values, this version is highly computationally 
effective. 

Since this version accurately maintains the order of individuals, it does not matter whether we rank them 
in ascending or descending order; the selected order will be retained also after the calibration. In other 
words, this method respects the symmetry of the task. 

However, its main disadvantage is that it may not be sufficient to describe the events our model is 
attempting to capture. For example, in modeling salary levels in the individual years, we probably do not 
want to determine the development of salaries deterministically, but we would also like to take into ac-
count the role of randomness.  

The first version with randomness  

The first random version a priori does not maintain symmetry. However, it is possible to change some 
details during the implementation (when percentile 𝑞𝑖 is occupied, choose as the first option the percen-

tile 𝑞𝑖−1 instead of 𝑞𝑖+1), so that a symmetric task generates corresponding results.  

Computation complexity of this version is significantly higher. While the other two versions are linear in 
terms of complexity, here the complexity can be up to quadratic. Since the MoLSA counts with large 
volume data, this should be taken into account when considering the method.  

The second version with randomness 

Although this version of the refinement method is the most complex in terms of thought, it is still com-
putationally efficient. That is because for every individual in each step (imagine a salary change between 
two time periods), we only generate the value of random variable 𝑋 which will be subsequently simply 
transformed by the defined formula and added to the individual's previous value. Thus, it is still a linear 
problem, but with a higher multiplicative constant.  

The advantage of this version is that it can maintain symmetry. This is true because we require 𝑋 to be 
a symmetric random variable. We will gradually analyze all three cases in turn according to how we can 
get the value of the target quantile 𝑣𝑖. Let Ρ be the probability of an event.  

• Let 𝑣𝑖 = 𝑢𝑖 + 𝑋 𝜖 (0,1). Then also (1 − 𝑢𝑖) − 𝑋 𝜖 (0,1). In addition: 

Ρ((1 − 𝑢𝑖) + 𝑋 =  1 − 𝑣𝑖) = Ρ((1 − 𝑢𝑖) − 𝑋 =  1 − 𝑣𝑖) =  Ρ(1 − 𝑢𝑖 − 𝑋 =  1 − (𝑢𝑖 + 𝑋)) = 1. 

The first equality results from the symmetry of 𝑋. Therefore, we have shown that the probability 
of transition from one percentile to another is equal to the probability of transition between the 
respective complementary percentiles. We will proceed similarly in the next two cases.  

• Let 𝑢𝑖 + 𝑋 < 0 and 𝑣𝑖 = −𝑢𝑖 − 𝑋. Then (1 − 𝑢𝑖) − 𝑋 > 1. Therefore, from percentile (1 − 𝑢𝑖) we 
would switch to percentile 2 − 𝑢𝑖 − 𝑋. 

Ρ(2 − (1 − 𝑢𝑖 − 𝑋) =  1 − 𝑣𝑖) =  Ρ(1 + 𝑢𝑖 + 𝑋 =  1 + 𝑢𝑖 + 𝑋) = 1 

• Finally, let 𝑢𝑖 + 𝑋 > 1 and 𝑣𝑖 = 2 − 𝑢𝑖 − 𝑋. Then (1 − 𝑢𝑖) − 𝑋 < 0, the appropriate percentile to 
which we would switch from 1 − 𝑢𝑖 therefore has the expression −(1 − 𝑢𝑖) − 𝑋. Then  

Ρ(−(1−𝑢𝑖) − 𝑋 =  1 − 𝑣𝑖) = Ρ(−(1−𝑢𝑖) + 𝑋 =  1 − 𝑣𝑖) = Ρ(−1+𝑢𝑖 + 𝑋 = 1 − (2 − 𝑢𝑖 − 𝑋))

=  Ρ(−1 + 𝑢𝑖 + 𝑋 =  −1 + 𝑢𝑖 + 𝑋) = 1. 

We have shown that with a unit probability, this method preserves symmetry. 

Shared qualities 

Since these methods are based on accurate knowledge of the target distribution, they offer a great 
advantage in achieving the calibration targets.  

If the covariate of the observed variable is the individual's history (as it is, for example, in our case of 
the amount of income that is directly influenced by past income), the relationship between the covariate 
and the response variable is preserved. This method is unable to take into account any other covariates. 
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The expected value for calibration is determined in the first two cases by the expected value of the 
defined distribution. In the latter case, it is again equal to the expected value of the target distribution, 
which, however, depends on the choice of the random variable 𝑋 and also on the initial distribution.  

Of course, once we accept that transitions between percentiles are controlled randomly, it is possible 
that individual moves from any percentile to any other percentile. Therefore, with very little probability, 
the poorest individual can become the richest. Thus, none of the transitions, when using this method, 
have a probability exactly equal to zero.  

Summary of Strengths and Weaknesses 

The main advantage of this calibration is that it safely approaches the calibration target. Moreover, the 
first and third versions are computationally fast and easy to implement. In addition, if the development 
of an individual (or, more precisely, the relevant observed variable) is influenced by his or her history, 
this dependence is fully taken into account during the calibration.  

As for the disadvantages, it is necessary to mention that the simplest version (without randomness) may 
not model the situation well enough because of its lack of consideration of the stochastic development 
of the individuals. The other versions do not preserve zero probabilities. 

For the second version, it is necessary to mention also the quadratic time complexity, which can cause 
problems for large data.  

 Suitability for Application in NEMO 

A key point in the application of the method of refinement of average values is the knowledge of the 
target distribution of the calibrated variable. It is therefore necessary to enter the probability distributions 
into the model from which individuals will be assigned values. The easiest way to do this is to always 
specify the distribution type (e.g., exponential) and its parameters, and introduce a formula into the code 
that calculates the relevant quantile of the given distribution. An alternative would be to enter the entire 
distribution in the input table, but it would have to be very extensive, because every individual in the 
model gets their unique quantile and the table would have to contain them all. Therefore, we do not 
recommend this solution.  

The knowledge of the monthly target distribution would be ideal for the model, but such data is not 
available. This data requirement can be avoided by setting additional assumptions, such as assuming 
that the salary will only be increased once a year in the simulation. For a one-year or a five-year 
timeframe, the distribution of the calibrated variable can be easily acquired, for example, from external 
statistics of the Czech Statistical Office or from the databases of MoLSA.  

In all versions of this method, it is necessary to always know about the person at what percentile he or 
she is. The easiest way to do this is to introduce a new variable in the input database, which, depending 
on the method, can be stable or may change every year.  

In the version where we want to verify which percentiles remain free, it is necessary to store the results 
of all individuals allowing the model access when simulating the following individuals. This can be done 
by introducing an extended type of variable. Such an implementation would not be entirely trivial, and 
more importantly, the variable would have to contain information on the occupancy of all quantiles in all 
projection years. Working with such a large array would place considerable demands on the memory 
and computing capacity of the computer.  

So we can see that the version that is suitable for implementation in Prophet is the first version (the one 
that holds a stable quantile for all persons) or the third version (where the quantile is changed by random 
distribution regardless of the results of other persons). The version where people can only move to free 
quantiles is computationally demanding and cannot be recommended.  

 Final Evaluation 

The strength of the method lies in its ability to assign individual persons a position within a predetermined 
probability distribution of the calibrated variable, consistently with the position of the person in the prob-
ability distribution of another variable. Therefore, the method can be used to calibrate salaries; on the 
contrary, using it for probability calibration would be complicated. Implementation in Prophet would be 
feasible but not entirely trivial. In general, therefore, it makes sense to use the method primarily for the 
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calibration of salaries in a situation where their probability distributions given by external projections 
change from year to year.  

4.5 Multiplicative Scaling 

 Method Description 

This method can be used at least in certain versions both during the parameter calibration and during 
the main model run. It consists in multiplying the values for all persons by a certain coefficient. This can 
be either identical for all individuals or individualized, for example, according to the value of the variable 
before calibration.  

A similar approach is already used in the current NEMO model for calibrating salary growth. A person's 
salary is influenced by the modeled career development. However, the overall salary growth of all per-
sons in the population should correspond to the average wage growth in the economy. Therefore, the 
so-called residual wage inflation is introduced into the model as another multiplicative parameter, which 
will correct the deviation, if any, caused by career growth. Residual wage inflation is an input for the 
model, so it is necessary to run the model first without it, compare the salary growth calculated by the 
model with the expected average wage growth in the economy, and calculate the residual inflation on 
the basis of this comparison. 

If the multiplicative factor is common to all persons, it is not difficult to find it: one preparatory run takes 
place, the value of the monitored variable is compared with the target value of the calibration, and the 
factor we are looking for is equal to the proportion thereof. If the model inserts a multiplier read directly 
from the inputs into the formula for the calibrated variable and the interpretation of this multiplier allows 
it, it will be possible to multiply this input directly by the obtained factor. This is possible, for example, for 
a monthly salary, which is typically calculated as the previous salary multiplied by salary inflation – the 
calibration can be done directly by changing the inflation. In other cases, it may be preferable to upload 
the calibration factor as a separated input and multiply the variable by it directly in the model only after 
all the other adjustments. This procedure is typically used when the calibrated variable is not controlled 
by a suitable multiplicative parameter. An example could be the calibration of salaries in the current 
NEMO model: this can be done neither by changing the wage inflation (since the aim is to approximate 
the overall salary growth in the model to the wage inflation entered in the input), nor by adjusting the 
way the salaries increase with advancing careers (because in one year, different people go through 
different points of their careers), and it is therefore necessary to introduce a third coefficient, namely the 
residual salary.  

However, multiplication by one common factor is not very appropriate when we want to adjust probabil-
ities (e.g., probability of finding a job), since it is not excluded that some of the adjusted probabilities will 
exceed 100%. This constraint can be eliminated by introducing a more complex version of this method, 
but only at the cost of disrupting the original probability distribution, since the probabilities of different 
amounts must be adjusted in different ways.  

The following procedure may be an example. If we want to increase the expected value of the observed 
binary variable by calibration, we increase the probability of each individual event by the portion of the 
distance between the initial probability value and 1, by whichever portion of this distance we want to 
increase the average probability. Formally written:  

• Let 𝐸[𝑋0] be the initial expected value of the calibrated binary variable with values 0 and 1, 

𝐸[𝑋1] the expected value after calibration, and 𝐸[𝑋1] > 𝐸[𝑋0]. 

• Let 𝑝0 =
𝐸[𝑋0]

𝑁
 and 𝑝1 =

𝐸[𝑋1]

𝑁
 be the average probabilities before and after the calibration, i.e., if 

all individuals had such probabilities, we would achieve the values 𝐸[𝑋0] and 𝐸[𝑋1] for the ob-

served variable. The letter 𝑁 here denotes the number of individuals in the population.  

• Let 𝑘 =  1 − 
1−𝑝1

1−𝑝0
 be the said part of the distance between 𝑝0 and 1 that we have exceeded by 

the shifting to 𝑝1. Now 0 ≤ 𝑘 ≤ 1 and 𝑝0 + 𝑘(1 − 𝑝0) =  𝑝1. 

• If 𝑝0,𝑖 is the initial probability of event i, then we get the new probability as 

𝑝1,𝑖 = 𝑝0,𝑖 + (1 − 𝑝0,𝑖) × 𝑘. 
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• Since 𝐸[𝑋0] is the initial expected value, ∑ 𝑝0,𝑖
𝑁
𝑖=1 = 𝐸[𝑋0] holds, and from here, after substi-

tuting for 𝑘  

∑ 𝑝1,𝑖

𝑁

𝑖=1

= ∑(𝑝0,𝑖 + (1 − 𝑝0,𝑖) × 𝑘)

𝑁

𝑖=1

= ∑ 𝑝0,𝑖

𝑁

𝑖=1

+ (1 − 
1 − 𝑝1

1 − 𝑝0

) ∑(1 − 𝑝0,𝑖)

𝑁

𝑖=1

= 

 

= 𝐸[𝑋0] + 
𝑝1 − 𝑝0

1 − 𝑝0

(𝑁 − 𝐸[𝑋0]) = 𝐸[𝑋0] +
𝑝1 − 𝑝0

1 − 𝑝0

𝑁(1 − 𝑝0) = 𝐸[𝑋0] + 𝐸[𝑋1] − 𝐸[𝑋0] = 𝐸[𝑋1], 

i.e., the algorithm always adjusts the expected value as desired.  

If the goal is to reduce the expected value, i.e., 𝐸[𝑋1] < 𝐸[𝑋0], the procedure is greatly simplified. This 

is because the ratio of the expected values 𝑙 =
𝐸[𝑋1]

𝐸[𝑋0]
=

𝑝1

𝑝0
 is less than 1. Therefore, if we multiply a num-

ber between 0 and 1 by it, we will still stay in that interval.  

We will therefore calibrate the probabilities by multiplying the original values by the parameter 𝑙, i.e., we 
will calculate using the following formula:  

𝑝1,𝑖 = 𝑝0,𝑖 × 𝑙. 

Maintaining the expected value is very simple in this case: 

∑ 𝑝1,𝑖

𝑁

𝑖=1

= ∑ 𝑝0,𝑖 × 𝑙

𝑁

𝑖=1

= 𝑙 ∑ 𝑝0,𝑖

𝑁

𝑖=1

=
𝐸[𝑋1]

𝐸[𝑋0]
𝐸[𝑋0] = 𝐸[𝑋1]. 

 General Evaluation 

As Stephensen notes (Stephensen, 2016), this method is not symmetric. Symmetry makes sense when 
we calibrate transition probabilities. In case we calibrate, for example, the level of salaries, the issue of 
symmetry does not have a meaningful interpretation.  

We illustrate the asymmetry of the method on a short example of transitions between statuses. If we 
have two persons with a probability of death 𝑝0,1 = 0.2 and 𝑝0,2 = 0.4, the expected value of the number 

of deaths will be 𝐸[𝑋0] = 𝑝0,1 + 𝑝0,2 = 0.6. If we want to increase this expected value to 0.8 using multi-

plicative scaling (i.e., 𝐸[𝑋1] = 0.8), we have two options – to calibrate either the number of deaths, or 
the number of survivals.  

First, we use the simple method where each probability is multiplied by the same coefficient. In the first 
case, we multiply both probabilities of death by a factor determined as the ratio of the two expected 

values: 𝑘 =
0,8

0,6
=

4

3
 and then 𝑝1,1 = 𝑘 × 𝑝0,1 =

4

15
, 𝑝1,2 = 𝑘 × 𝑝0,2 =

8

15
. Since neither of our adjusted prob-

abilities exceeds 100%, the multiplication by one common factor is correct. Next, we calculate that the 

probabilities of survival will be 1 − 𝑝1,1 =
11

15
 and 1 − 𝑝1,2 =

7

15
. Conversely, if we calibrate survival proba-

bilities, we want to reduce the expected value of the number of survivors from 1.4 to 1.2. Therefore, we 

multiply both probabilities of survival by the coefficient 𝑙 =
1,2

1,4
=

6

7
 and we get the survival probabilities 

as 1 − 𝑝1,1 = (1 − 𝑝0,1) × 𝑙 =
24

35
, 1 − 𝑝1,2 = (1 − 𝑝0,2) × 𝑙 =

18

35
, or probabilities of death respectively as 

𝑝1,1 =
11

35
, 𝑝1,2 =

17

35
, which are different results.  

Let us look on the same case, at how the values change if we use the second calculation method, which 

prevents any probability from exceeding 100%. In this case, the factor 𝑘 has value 𝑘 = 1 −
1−0,4

1−0,3
=

1

7
 and 

probabilities of death are 𝑝1,1 = 𝑝0,1 + (1 − 𝑝0,1) × 𝑘 =
1

5
+ (1 −

1

5
) ×

1

7
=

11

35
 and 𝑝1,2 = 𝑝0,2 + (1 − 𝑝0,2) ×

𝑘 =
2

5
+ (1 −

2

5
) ×

1

7
=

17

35
. In this case, if we calibrate the survival probabilities, we want to reduce the 

expected value by calibrating, so we get that the factor 𝑙 holds 𝑙 =
1−0,4

1−0,3
=

6

7
. The calibrated survival prob-

abilities are equal to 1 − 𝑝1,1 = 1 − 𝑝0,1 × 𝑙 = 1 −
1

5
×

6

7
=

31

35
 and 1 − 𝑝1,2 = 1 − 𝑝0,2 × 𝑙 = 1 −

3

5
×

6

7
=

17

35
, 

and probabilities of death are 𝑝1,1 =
4

35
, 𝑝1,2 =

18

35
, which, again, are different results pointing out that this 

version of multiplicative scaling is not symmetric. 
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After we have devoted a lot of space to the symmetry of the task, let us discuss the other properties of 
this method.  

Firstly, it is worth mentioning the advantage of this method, that it exactly achieves the desired expected 
value. However, it comes at the cost of disrupting the marginal distributions. Although it does not directly 
reflect the relationship between the covariate and the dependent variable, the changes in the individual 
values are not random, but are always directly based on the magnitude of the initial value.  

It also respects the zero probabilities. In the case of a simple multiplication of probability by the relevant 
factor, this is obvious (because if we multiply zero by any constant, we get zero again). The same holds, 
if we want to reduce the expected value by calibration, as is clear from the formula  
𝑝1,𝑖 = 𝑝0,𝑖 + 𝑝0,𝑖 × 𝑙. In case we want to increase the expected value, let us look at the breakdown of this 

transformation in case of zero probabilities 𝑝0,𝑖. We get 𝑝1,𝑖 = 𝑝0,𝑖 + (1 − 𝑝0,𝑖) × 𝑘 =  0 + (1 − 0) × 𝑘 =

𝑘 = 1 − 
1−𝑝1

1−𝑝0
. Therefore, 𝑝1,𝑖 = 0 is true only if 𝑝1 = 0, which, however, will not happen because we want 

the calibrated value 𝐸[𝑋1] = 𝑁 × 𝑝1 for fixed 𝑁 to be higher than 𝐸[𝑋0] = 𝑁 × 𝑝0, whereas 𝑝0 belongs to 

interval [0,1]. 

This method is computationally effective because it is performed in linear time.  

For this method, it is interesting to look at the distribution deviation index, 𝐷𝐷𝐼. If we multiply all values 

by the same constant, it results equal to zero because 𝐷𝐷𝐼 =  ∑
𝑁𝑖

𝑁
(𝑆𝑖 − 𝑅𝑂𝑖)2𝑛

𝑖=1 =  ∑
𝑁𝑖

𝑁
(𝑆𝑖 − 𝑅𝑂𝑖)

2𝑛
𝑖=1 . 

Similarly, if we reduce the expected value by calibration, this index is zero because 𝑆𝑖 =
1

𝑁𝑖
∑ 𝑝1,𝑗

𝑁𝑖
𝑗=1 =

1

𝑁𝑖
∑ 𝑝0,𝑗(1 +

𝑝1−𝑝0

𝑝0
)

𝑁𝑖
𝑗=1 , 𝑂𝑖 =

1

𝑁𝑖
∑ 𝑝0,𝑗

𝑁𝑖
𝑗=1 , 𝑅 =

𝑝1

𝑝0
, i.e., 𝑆𝑖 − 𝑅𝑂𝑖 =  

1

𝑁𝑖
∑ (𝑝0,𝑗 + 𝑝0,𝑗

𝑝1

𝑝0
− 𝑝0,𝑖 − 𝑝0,𝑗

𝑝1

𝑝0
)

𝑁𝑖
𝑗=1 = 0. 

However, this property does not apply to increasing the expected value. In such case, 𝑆𝑖 − 𝑅𝑂𝑖 =

 
1

𝑁𝑖
∑ (𝑝0,𝑗 + (1 − 𝑝0,𝑗)

𝑝1−𝑝0

𝑝0
− 𝑝0,𝑗

𝑝1

𝑝0
)

𝑁𝑖
𝑗=1 =

1

𝑁𝑖
∑ (1 −

𝑝1

𝑝0
) (2𝑝0,𝑗 − 1)

𝑁𝑖
𝑗=1 . Therefore, index 𝐷𝐷𝐼 approaches 

zero if the resulting expected value differs from the initial very little, or when the initial values are around 
one-half. 

Summary of Strengths and Weaknesses 

The main advantage of this method is that it strictly adheres to the determined expected value. Unfortu-
nately, in a more complicated version, when it changes values proportionally, separately for each indi-
vidual, it does not preserve the individual distribution. Furthermore, it is computationally efficient, but its 
asymmetry can be a problem. 

 Suitability for Application in NEMO 

Calibration coefficients are calculated outside Prophet by simply comparing the Prophet results and the 
calibration targets.  

A certain complication occurs the moment we want to implement the calculated calibration coefficients 
in the model. Since we are unlikely to have monthly calibration targets (but rather annual or five-year 
targets), we will need to make the appropriate conversion. Again, it will be necessary to take care of the 
cases already mentioned in the comments on the previous methods; for a detailed explanation we refer 
again to chapter 4.8.3.  

 Final Evaluation 

Multiplicative scaling is a very simple method, easy to implement and computationally not time-intensive. 
Its main disadvantage is the difficulty in using probability calibration. However, this is a very good method 
for calibrating salaries, partly because it is already being used in some form.  

4.6 Sidewalk Method  

 Method Description 

This method was introduced by O’Donoghue and Li as Sidewalk Method (O'Donoghue, et al., 2014). Its 
first version was implemented in CORSIM (a model developed in the US to model a social security 
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system) where it is used to limit statistical errors in the results (Anderson, 2019). Individuals who may 
have the same event at the same time are examined by the model one by one, adding up their proba-
bilities. Whenever a person's contribution results in an integer threshold being exceeded, the event oc-
curs for that person. This technique ensures that the simulated number of events will differ by a maxi-
mum of 1 from the expected value. However, this is not a calibration method as such, since it is not 
possible to move away even intentionally from the expected value based on microdata.  

The DYNACAN model (Canadian social security model, built on the basis of CORSIM) uses a version 
of this method, which, in addition to limiting the randomness of the model, also acts as a calibration 
technique (Anderson, 2019). Again, the probabilities of a certain event for individual persons are grad-
ually added up, but this time the events are based on a random simulation. The total number of events 
occurring is then compared to the expected number. If these two values move away from each other, 
the algorithm will begin to slightly adjust the probabilities for other persons to increase the probability of 
the result which approximates them again. Both sums persist from year to year, so if there is a difference 
in one year, the algorithm will try to equalize it in the following year.  

It is suitable to use the logit function for probability adjustment, because it is able to convert any real 
number to probability. The following function is a simple way to take into account the model's evolution 
to date:  

𝑝1 = logit−1 (logit(𝑝0) + 𝑘
𝐶 − 𝐷

𝑁
),  

where:  

• 𝑝0 is the probability of the event before the calibration; 

• 𝑝1 is the probability of the event after the calibration;  

• 𝐶 is the current calibration target, i.e., the number of events that should have occurred accord-
ing to the calibration target for persons processed by the model;  

• 𝐷 is the current result of the model, i.e., the number of events that actually occurred in the 
model for persons processed by the model;  

• 𝑁 is the size of the population subject to the calibration;  

• 𝑘 is the coefficient that determines the speed of the calibration.  

Please note that the values 𝐶 and 𝐷 vary for each person.  

Let us now describe in more detail how the probabilities change under this calibration method. If the 
calibration target and the number of event realizations match perfectly in the model, there is no adjust-
ment to the probability. Similarly, if their difference from population size is negligible, the probability will 
change only slightly. The more the values vary from each other, the more we adjust the probabilities, 
and the dependence of the magnitude of the adjustment on the magnitude of the difference is approxi-
mately linear at the beginning and then it slows down (because the probability cannot get out of the 
interval [0,1]). The rate at which the probability increases is determined by the coefficient 𝑘. A lower 𝑘 
means lower probability sensitivity to model randomness. We recommend selecting this version if the 
calibration target is not too far from the model result before calibration. On the other hand, a high 𝑘 will 
make it possible to achieve also calibration targets more distant from the original model result. The price 
for this is a more pronounced deviation of probabilities even when there is no good reason for it, because 
the calibration target is relatively well consistent with the model result so far (and the differences be-
tween the calibration target and the actual results are mainly due to the randomness of the model).  

These dependencies are illustrated in the following charts. In both cases we capture the dependence of 
the calibrated probability of the event on the standardized distance of the previous model results from 

the calibration target (i.e., on the value 
𝐶−𝐷

𝑁
). We calibrate three persons: the green curve corresponds 

to the default probability of 20%, the blue one to probability of 50% and the red one to probability of 
80%. The calibrated probability equals the initial probability in all cases when the distance of the cali-
bration target from the previous model results is zero. In the charts, these points are indicated by a 
vertical black line. We present charts for 𝑘 = 1 and 𝑘 = 5; however, in the event of implementation, it 
makes sense to consider higher values as well.  

The code with which these charts can be generated in R software is presented in B.2. 
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Sidewalk method with parameter 1 (left) and parameter 5 (right) 

The choice of the population size 𝑁 remains to be commented. Generally, we will use the number of all 
persons for whom the realization of a random variable is permissible (i.e., for example, excluding those 
who do not meet the legal requirements for the transition or who passed away in that year). This con-
vention works well if we calibrate each person only once (e.g., calibration of employment in one year or 
calibration of transition to employment or unemployment after graduation). If we perform calibration re-
peatedly in each modeling period, it may be appropriate to set 𝑁 separately for each year (and use the 

same 𝑘 for all years). If we used the total number of calibrated cases over all periods, the fraction 
𝐶−𝐷

𝑁
 in 

the first periods would be low and the calibration would only have a real effect in later periods.  

The opposite happens if the population size changes significantly during the projection. For example, if 
a large proportion of the population becomes extinct in one particular period, there may be a difference 
𝐶 − 𝐷 from past periods which may be high relative to the remaining population. The probabilities will 
then suddenly be adjusted much more strongly than in the previous period. In such case, it may be 
preferable to select 𝑁 as the number of calibration cases for the entire projection or, as the case may 

be, transfer from the past period only a portion of the difference 𝐶 − 𝐷 or not transfer at all.  

So far we have assumed that for the choice of 𝑁 we know the number of persons for whom random 
selection will take place. This figure is easy to find if all persons are counted in parallel. If not (which is 
the case, for example, of the NEMO model), it is possible, nevertheless, to estimate the number of 
cases. An error, if any, in estimating 𝑁 will have the same effect as if we had chosen exactly the right 𝑁 

and a slightly different 𝑘. Therefore, as long as the error remains low (e.g., up to 10%), there is no 
significant model distortion.  

This method can even be used to simultaneously calibrate two interconnected events, such as employ-
ment and unemployment. In such case, we will want to keep an overview of the occurrences of both 
events so far and their consistency with the calibration target separately. At times when only one of the 
events is relevant (e.g., transition from employment to inactivity), the procedure will remain unchanged. 
If both events are related to a certain event at once, we simply insert one term for each of them into the 
calibration equation, with the correct sign. For example, we would use the following formula for the 
transition from unemployment to employment: 

𝑝1 = logit−1 (logit(𝑝0) + 𝑘
𝐶𝑧 − 𝐷𝑧

𝑁
− 𝑘

𝐶𝑛 − 𝐷𝑛

𝑁
) = logit−1 (logit(𝑝0) + 𝑘

𝐶𝑧 − 𝐷𝑧−𝐶𝑛 + 𝐷𝑛

𝑁
).  

The notation remains the same as above: 𝑝0 is the initial probability of transition, 𝑝1 is probability after 

calibration, 𝑘 coefficient expressing the calibration speed, 𝑁 the number of persons for whom the tran-
sition may occur, 𝐶𝑧 and 𝐶𝑛 calibration targets for the number of employed and unemployed; and 𝐷𝑧 and 

𝐷𝑛 the numbers thereof so far. We therefore increase the probability of transition if we have a lack of 
employed individuals and a surplus of the unemployed individuals relative to the calibration target, oth-
erwise we reduce it. If both counts are deviated toward the same side, the probability will deflect such 
as to reduce the larger of the two differences between the results so far and the calibration targets.  

The sidewalk method is also available in the LIAM2 and JAS-Mine platforms. In both cases, however, it 
is rather a complementary option, the documentation of LIAM2 directs the user to the alignment by 
sorting method (see chapter 4.7), while the developers of JAS-Mine prefer Bi-Proportional scaling  (see 
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chapter 4.8). According to our information, the method is implemented in both models only in its simple 
version which controls the dispersion of results, but does not serve for calibration as such.  

 General Evaluation 

To better talk about the pros and cons of the sidewalk method, we divide it into cases where we are 
using version number one (a change in probabilities based on exceeding an integer limit) and version 
number two (with a random change in transition probabilities). 

Version 1 

The first version of this calibration method offers the advantage of its straightforwardness. This is man-
ifested in the efficiency of the calculation, which only runs one loop across all persons in each period 
and requires a single, linear, auxiliary calculation.  

As mentioned above, this method maintains distribution in terms of the expected value which differs by 
no more than 1 from the expected value before calibration. If we have data arranged randomly (or, more 
precisely, in an order which does not depend on the size of the probabilities of individuals), the proba-
bility that we indicate the event for that individual is directly proportional to the magnitude of their re-
spective transition probability. Individual partial distributions are therefore also maintained. Similarly, 
one can also see that this method maintains symmetry. 

The first version maintains zero probabilities. Let us note that they must be defined really equal to zero. 
Once a probability is defined as a very small but nonzero number, it also increases the interim total and 
may cause it to exceed the integer value. 

Version 2 

The second version of the sidewalk method is significantly more complex than the first version. It will 
therefore be somewhat difficult to implement, but it is still not a difficulty that would make it impossible 
for MoLSA to use the method.  

Computation efficiency is reduced again when using the second version, since each transition probabil-
ity (at all relevant times for all individuals) needs to be recalculated and, in addition, at every step we 

look for the value of the fraction 
𝐶−𝐷

𝑁
. However, we are still in linear complexity. 

The second version, however, compensates these disadvantages by responding more flexibly to the 
distance from the calibration target. The disadvantage is that this version does not preserve the original 
distribution. When the calibration target differs significantly from the number of simulated events, there 
are steep (illogical) changes of the transition probability for individual persons. However, since this 
method converges to the calibration target, it also approximates distributions that are similar to the initial 
distributions before the calibration. The speed and smoothness of this convergence depends on the 
choice of parameter 𝑘, on knowledge and choice of parameter 𝑁, as well as on the variability of the 
initial distributions and the a priori distance from the calibration target. The exact discussion is presented 
above in the method description. 

Let us now open the discussion on the preservation of the relationship of the covariate and the response 
variable. Of course, it is a fact that individual probabilities can change step-wise independently of their 
regressors, but there is another view that will be more interesting in terms of using this method by 
MoLSA. If we do not look at the probability of occurrence of the event for an individual, but rather the 
number of events for a larger group (for example, groups of men or women, age groups, etc.), the 
sidewalk method will respect that classification. The reason is the aforementioned convergence of the 
method.  

Although this method, as described above, adjusts zero probabilities and may increase their value, it is 
not difficult to introduce a simple condition into the implementation that will prevent the recalculation 
thereof. A problem could only arise if some probabilities were equal to a small positive number instead 
of an exact zero. The value of the logit function could then be noticeably increased for them, and main-
taining zero would be violated. 

If we found a suitable division of the population into groups to calculate the Distribution Deviation Index 
(DDI), this index can serve us not only for comparison with other calibration methods, but also for check-
ing which choice of parameter 𝑘 is suitable for our case. 
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Summary of Strengths and Weaknesses 

The main strengths of using the sidewalk method include the fact that the method is comprehensible, 
easy to implement and has low demands for computation capacity, and always approximates the cali-
bration target for a suitable parameter value. Moreover, the first version maintains symmetry. 

As for weaknesses, it is necessary to stress that the method does not guarantee preservation of the 
original distribution of individuals; for some individuals, it can model sudden transitions between individ-
ual statuses that do not have a logical interpretation. However, for larger groups, this distribution is 
maintained. 

 Suitability for Application in NEMO 

This method can be implemented directly into the NEMO model and performed in a single run. No aux-
iliary tools created in other programs are needed and no auxiliary runs are needed.  

The calibration input will be a table with probabilities of calibrated events occurring and the number of 
persons involved in the calibration (for example, with the employment rate and size of active population 
in a given cohort). These values can be determined from external projection. The table may typically 
depend on the year of birth, sex and calendar year, but it is also possible to imagine a division according 
to other criteria.  

In the NEMO model, we then introduce a variable of the extended formula type, in which we will observe 
the current number of events (if we want to divide the calibration by certain groups or calendar years, 
we will keep an array of the appropriate dimensions in the variable). We will upload this value whenever 
a calibrated event is to be decided and complete it with data from the input table.  

• A complication is that events in the NEMO model typically occur in a number of ways. Calibra-
tion must therefore be included in all places where decisions on the event are made. In gen-
eral:  

• If the event occurs deterministically, we count it in the number of events that occur, but we will 
not calibrate the probability in any way. Such behavior is shown, for example, by the recovery 
of a sick employee – the duration of the sickness is determined at the commencement of the 
sickness and is not further adjusted (at least as long as the person remains employed).  

• If the probability of an event depends on a certain occurrence, we will not change the probabil-
ity of the occurrence as such, but we will change the probability of the event itself. For exam-
ple, we will calibrate the probability of leaving employment as a result of retirement, but not the 
probability of retirement as such.  

• If the probability of an event is determined based on a transition matrix that is applied without 
additional conditions every month, we will adjust it.  

• Since we typically want to calibrate the number of people in a particular status, we will need to 
include also persons who remain in that status. The probability of staying in a certain status 
does not appear in the model itself, but the model uses probabilities of transition from a cali-
brated status to another (for example, if we calibrate the number of employed individuals, we 
also adjust the probability of transition from employment to unemployment). These will be 
modified again using the principles described in the previous three points (i.e., taking into ac-
count the dependence, if any, on an event or fixed duration of the status). Since this time we 
calibrate the non-occurrence of the event, while we have considered its occurrence so far, the 
sign in the calibration function changes and the result is that the probability of leaving the sta-
tus will be calculated as  

𝑝1 = logit
−1 (logit(𝑝0) − 𝑘

𝐶 − 𝐷

𝑁
) . 

The meaning of all symbols remains the same, 𝐶 and 𝐷 therefore still relate to the number of 
persons who are or should be in the calibrated status at the end of the period (i.e., after appli-
cation of the transition probability).  

Individuals must be calculated in random order to perform the method correctly. (For example, if the 
model were to run the persons starting out as employed first and then unemployed persons, the em-
ployment would be too high after running the first persons and the model would apply unnecessarily 
strong adjustments.) This cannot be easily accomplished in Prophet. However, random ordering can be 
easily done in an external tool or incorporated into data preparation procedures in DCS.  
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The main challenge in implementing the method in Prophet would be to find all the places in the model 
that need to be adjusted. Individual adjustments in the code would be rather simpler. 

 Final Evaluation 

The sidewalk method can perform calibration within a single model run in Prophet, does not require 
creation of external tools or too complex input structure. Its main disadvantage is the fact that the way 
a particular individual is calibrated depends on the order in which the individuals enter the calculation. 
Nevertheless, the method preserves the probability distribution of the calibrated variable to a large ex-
tent. At the same time, it is possible to calibrate several variables at once. Therefore, we consider it to 
be one of the best options for the calibration of state variables, in particular employment or, as the case 
may be, unemployment.  

4.7 Alignment by Sorting 

 Method Description 

The alignment by sorting method was also described by O’Donoghue and Li (O'Donoghue, et al., 2014) 
and one of its versions is used in the LIAM2 model. As the only method in this study, it always achieves 
perfect match with the calibration target; its application should be therefore considered especially for 
transitions that occur only for a small group of individuals or with a low probability but which are never-
theless essential for the outcome of the projection. The basic principle is very simple: we calculate the 
probabilities of the event for all individuals and sort them from highest to lowest. If the calibration target 
indicates that the event should occur in 𝑀 cases, we select 𝑀 individuals with the highest probability 
and assign the event to them.  

This basic version has one significant disadvantage: when a group of persons subject to the same cali-
bration target contains persons with different probabilities, persons with a high probability are always 
selected, while persons with a low probability are never selected. This happens very often because the 
calibration target is usually in aggregate values. For example, if this method were used to calibrate the 
total number of newly awarded disability pensions in the population, all new disability pensioners would 
fall into the oldest years because the probability of disability in models typically depends mainly on age. 
This is obviously at odds with reality. A numerical example of this characteristic is provided in the eval-
uation section.  

The first way to get rid of this constraint is to include a random component in the sorting, i.e., sort not by 
probability alone, but by the sum of probability with a random number generated from uniform distribution 
over the interval (0,1). As a result, a person with a low probability can be chosen for realization of the 
event if a high random number is generated for his or her. 

The second option is to insert a random value in the inverse logit function argument and instead of a 
simple uniform distribution we choose a distribution based on logit transformation; specifically, we sort 
the persons according to 𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝑝) + 𝑥), where 𝑝 is the initial probability and 𝑥 is the value gen-

erated from uniform distribution. As a result, all resulting values will belong to the interval (0,1).  

The alignment by sorting calibration technique is also implemented in the LIAM2 model (de Menten, et 
al., 2019), an open-source platform for creating and managing microsimulation models which is currently 
developed by researchers from the Federal Planning Bureau in Belgium, CEPS/INSTEAD and Inspec-
tion Générale de la Sécurité Sociale in Luxembourg. The user can specify any function on the basis of 
which persons will be sorted and selected: the model then enters the input probabilities of the event for 
individual persons, sorts the persons according to the results, and selects the specified number of the 
highest results. Random number generation can also be part of the function. In this way, it is possible 
to replicate any of the three alignment options mentioned above, with the model developers recom-
mending the third, logit option. The user can also specify a group of persons who are always or never 
selected – for example, when calibrating the number of unemployed individuals, we may want to strictly 
exclude old-age pensioners. This mechanism is particularly useful if the calibration is to be applied to 
several non-overlapping groups.  

Note that the basic form of this method works best if each person has a slightly different probability. If 
the probability can only attain a few values in the model (for example, if a modeling method has been 
chosen where the probability of the birth of a child depends solely on age and the highest education 
level achieved), there will be a larger group of persons who all have the same probability of an event, 
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but out of this group the event is only supposed to occur for some. It will then be necessary to apply a 
random selection. Conversely, if the probability of the event is sufficiently refined (for example, if, in the 
modeling approach, the probability of finding a job decreases steadily with each passing day of unem-
ployment), we will avoid this problem. Similarly, this problem will no longer exist if we enrich the method 
by generating random numbers.  

 General Evaluation 

Let us begin with the example we promised in the section describing this method. The code for the 
following charts is presented in Appendix B.4. For 1000 individuals, we simulate probabilities from a 
lognormal distribution with zero expected value and standard deviation equal to one half re-scaled to 
the interval [0,1]. For each individual, we remember which highest value was assigned to him. This is 
represented in the charts by the shade of the color. The first chart shows the values of the generated 
probabilities. 

 

 

                          Primary probabilities 

The dark green vertical line in the following charts indicates the limit of the number of individuals for 
whom an event occurs (𝑀); in this example we chose the value 150. Now let us see how the first method 
handles this data. First, it sorts the individuals in ascending order by probability and then decides that 
the event will occur for those who are to the right of the green line in the chart, i.e., select the desired 
quantity of 𝑀 individuals. We will notice that this result also corresponds to the selection of the “darkest” 
individuals.  

 

 

                                    Ordered primary probabilities 
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In another version, we first add a random number to the probabilities of these individuals from the interval 
(0,1). The adjusted and sorted probabilities are shown in the third chart. Again, the event occurs for 
individuals who are to the right of the green curve in the chart. Note that in this case, a relatively small 
number of individuals were chosen who had a high probability in the original distribution (i.e., they are 
colored in dark shades). 

 

 

                            Ordered probabilities after adding x 

Finally, the last method first transforms probabilities using the formula 𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝑝) + 𝑥) and subse-
quently sorts and selects individuals to the right of the green line, which is shown by the following chart. 
The chart also shows that, compared to the previous one, this variant of the method selects a larger 
number of individuals with a high initial probability. This is the behavior we would expect in the real 
situation. From this point of view, therefore, this version is more beneficial than simply adding a random 
variable 𝑥. 

 

 

                  Ordered probabilities after logit transformation 

This method maintains the symmetry of the task. In the simplest version it is obvious, in the more com-
plex ones it deserves a small comment. Since we select random variable 𝑥 from a uniform distribution, 
the addition of their realizations can be viewed as an operation that does not change the order of the 
probabilities. In addition, the function 𝑙𝑜𝑔𝑖𝑡−1(𝑙𝑜𝑔𝑖𝑡(𝑝) + 𝑥) in the argument 𝑝 is a strictly increasing 
function. Therefore, symmetry is maintained in this case, too. The last chart of this section illustrates the 
symmetric role of the logit version of the example above.   
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                   Ordered probabilities after logit transformation in symmetric task 

A big disadvantage of the method, on the other hand, is the fact that (except for the first version in which 
we do not bring any randomness), it does not meet the requirement for maintaining zero probabilities. 
Even if an individual has a zero probability, the other two versions can (with a low probability) model the 
situation that the event occurs.  

As mentioned in the introduction, the great advantage of this option is the precise adherence to the 
calibration target. However, it pays for this by violating the distribution of individuals and, moreover, is 
unable to maintain a relationship with the covariate.  

In terms of computing, the alignment by sorting method is not very expensive. Its complexity will corre-
spond to the complexity of the sorting algorithm which is basically 𝑁𝑙𝑜𝑔(𝑁) for a population with the size 

of 𝑁.  

 Suitability for Application in NEMO 

The implementation of this method in Prophet encounters major obstacles. The main reason is that 
Prophet always runs the whole career path of one person before moving on to the next person, while 
forgetting all data except the so-called reporting variables before moving on to the next person. The 
variable to be calibrated is therefore not known to all calibrated persons at any time. It is therefore not 
possible to sort them accordingly and select those with the highest probability.  

The theoretical way to overcome this constraint is to record the values of the variable in an external file, 
identify the individuals to be transitioned using an external tool, write their IDs in a table, and use the 
table in a new run. However, this approach has two basic pitfalls. The first is the size of the external 
table to be recorded in – writing values for each person in the population of about ten million (active at 
a given moment, i.e., without the dead and unborn) puts significant requirements on the computing 
power.  

The second and more serious constraint is the fact that only one period can be successfully calibrated 
using one pair of runs. As soon as we calibrate the first period, we change the numbers of persons 
entering the next period as well as the probabilities of their transitions. The values we listed in the first 
run will no longer be valid, and it will therefore not be possible to make the correct selection on the basis 
of these values. For each additional period, it would be necessary to run the model again, and this would 
increase the computing time disproportionately.  

We therefore do not consider the method suitable for use in Prophet.  

 Final Evaluation 

The alignment by sorting method significantly undermines the underlying probability distributions and its 
implementation in the NEMO model would be challenging. Therefore, it cannot be recommended for the 
MoLSA needs.  
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4.8 Bi-Proportional Scaling  

 Method Description 

This method is proposed by Stephensen (Stephensen, 2016) and it is implemented as the main calibra-
tion method in the JAS-Mine platform. According to its author, it fulfills all eight criteria which he has set 
for calibration methods in the same article; in particular, it can also be used in a situation where a deci-
sion is to be made among several possible states (while other methods usually require binary decisions).  

In order to perform this calibration method, we create a large table where the number of rows is equal 
to the number of persons whose probabilities we are calibrating, and the number of columns is equal to 
the number of possible output statuses. Each table element determines the probability that a certain 
person (given by a row number) will make a transition into a certain status (corresponding to a column 
number). So we want to achieve a situation where the sum of each row is 1 (because it is a sum of 
probabilities and we include all the statuses that the person can make a transition to) and the sum of 
each column will correspond to the calibration target for the corresponding status (then the expected 
value of the transitions given by this table will correspond to the calibration target). At the beginning of 
the calibration we enter the default transition probabilities in the table – i.e., the sum of each row will be 
1, but the column totals will differ from the calibration targets.  

The calibration itself is then performed by iterative repetition of two steps. In the first step, we multiply 
each of the columns by a coefficient such that the totals within the columns correspond to the calibration 
target (we will have one coefficient for each column in the table). However, this distorts the totals within 
rows. In the second step, on the other hand, we multiply each row by a coefficient so that the totals 
within the rows again produce 1 (this time we will have as many coefficients as there are rows in the 
table). We will repeat these two steps until we reach a state where, even after the second step, the 
column totals approach the calibration target. Since convergence is very fast in the normal situation (see 
the method evaluation section), it is possible to set a relatively strict goal, for example: “The sum of 
deviations of modeled counts from calibration targets across all statuses must not exceed 0.01% of the 
total population.” It is also recommended to limit the number of iterations of the algorithm to ten, for 
example, and issue a warning if the required accuracy cannot be achieved in this number of iterations.  

The algorithm converges for all achievable assignments (Deeparnab, et al., 2018). An analysis of which 
calibration targets are achievable is presented in the evaluation section.  

  General Evaluation 

We have stated that the method can only give results for some assignments. The first condition is that 
the total sum of the calibration targets (i.e., sum of the number of persons we want to have in each 
status after the calibration) must be equal to the size of our population, i.e. the total number of rows of 
the transition matrix. If it is not the case, the calibration cannot be successful – the method is unable to 
add or remove persons who were not initially in the system. 

Another example of a non-achievable assignment can be the extreme situation where the transition 
probabilities are expressed by the identity matrix, i.e., we have the same number of persons as the 
target states, each person only makes a transition to one of them and each person makes a transition 
to different one. In a population of three people, the transition matrix would look like this:  

(
1 0 0
0 1 0
0 0 1

). 

Imagine that the calibration target is for an average of 1.2 persons to make a transition to the first state, 
0.8 persons to the second state, and for the number of transitions to the third state to remain unchanged 
at 1. In the first step of the algorithm, we would multiply the entire first column by 1.2, the second by 0.8, 
and the third by 1 to get the following matrix 

(
1.2 0 0
0 0.8 0
0 0 1

). 

Therefore, only one person was affected in each column. In the second step of the algorithm, we adjust 
the sums in each row to 1. So, we divide the first row by 1.2, the second by 0.8 and the third by 1, and 
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we get to the identity matrix we started with. Thus, the algorithm never converges. The reason here is 
that no adjustment affects more than one person.  

From here we see the second necessary condition for the algorithm to be successful: no calibration 
target shall be greater than the number of persons with a nonzero value in that column in the starting 
matrix. Zero values will remain equal to zero and nonzero values may increase to a maximum of 1 
(because we count with probabilities), therefore, for each status, there is an upper limit for the number 
of people we can move into it.  

Let us now comment on the speed of convergence of this method, i.e., the number of iterations needed 
to achieve the required accuracy. It is possible to find estimates in the literature (Deeparnab, et al., 
2018) of the rate at which the required number of iterations increases as the number of persons cali-
brated increases. According to these results, it cannot be ruled out that up to several million iterations 
may be needed for a single calibration, depending on the required accuracy, so caution should be war-
ranted. However, it would be a mistake to reject the method based on this information alone, because 
in MoLSA conditions, calibration may be easier than in the most difficult scenario (while the study pro-
vides an estimate valid in general) and because the estimate for the worst-case scenario in the article 
may not be optimal.  

Therefore, we tested the method using an R script, which we implemented and used for test data. With 
10 million people, six possible statuses, and a permitted deviation of no more than 1,000 persons in all 
states together, the calibration was performed in a maximum of five iterations and lasted less than 10 
seconds (a four-core work notebook with a 2 800 GHz processor and 8GB of memory was used). This 
result alone cannot be considered conclusive because it does not guarantee that there are no initial 
settings for which significantly more iterations would be required. However, it suggests that the method 
is indeed quite effective under normal circumstances.  

The indisputable advantages of this method include its convergence for almost all cases. Furthermore, 
if the probability of a particular state for a certain person is zero, the above-described algorithm is not 
able to re-scale that zero value to a non-zero value – the algorithm only adjusts nonzero probabilities of 
states.  

Talking about a symmetric role may be irrelevant in this case. As mentioned in its implementation, the 
bi-proportional scaling method has the advantage of being able to calibrate the transition probabilities 
to a greater number of possible states simultaneously. To talk about symmetry, we would have to find a 
variable that attains only two different values and, at the same time, is independent of all others. Even 
for our classic example of the number of survivors and non-survivors, it is necessary to realize that the 
condition of independence also affects other statuses; for example, only an individual who is also a 
survivor can be employed.  

For each individual during the algorithm we multiply his or her individual transition probabilities by differ-
ent numbers that are not (at least linearly) dependent on each other; this shows that this method disrupts 
the form of the primary distributions of individuals.  

 Suitability for Application in NEMO 

It is not possible to implement this method in the current NEMO model, as it calculates individual persons 
gradually: first the whole life path of the first person, then the whole life path of the second person, and 
so on. Therefore, Prophet never knows the transition probabilities of all persons at the same time and 
therefore cannot perform this calibration method. It would therefore be necessary to create an auxiliary 
tool in some other program (e.g., in R), upload all the necessary transition probabilities into it, perform 
the calibration there, and transfer the results back to the model in Prophet.  

Since the initial number of people in each status can be determined directly from the model point data-
base and transition probabilities from the input tables entering the NEMO model, there is no need to run 
Prophet at all during the preparation for calibration. All necessary tasks can be performed directly in the 
external tool.  

Since not all statuses are present in external projections, the analyst has some freedom in setting the 
calibration targets. We recommend choosing a simple method here, for example, to take over all the 
numbers that are explicitly available in the external projection and set the others in the same ratio as 
predicted by the NEMO model in a given period.  
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In its basic form, the method assumes that each line will represent one person. Such a matrix would be 
very extensive for the NEMO model, and if calibration occurred frequently (e.g., every month) and there 
were many possible transitions, we might run into computation capacity constraints. We will partially 
solve this problem by grouping individuals with the same profile in terms of transition probabilities. If two 
people have the same age, education, sex, current position in the labor market and all other predictors, 
their transition probabilities will also be the same, and it will therefore be possible to count them all on 
the same row. We then have to multiply the entire row by the number of people included, so instead of 
the transition probabilities we will present the expected value of the transitions to the particular status, 
and the total number of persons as the required row sum. Even if there were several thousands of such 
groups, the process would be significantly accelerated.  

We have already seen that performing the calibration in R is very simple and computationally efficient. 
Similarly, adjusting the calculation in Prophet using the calibration results would not be difficult. In this 
method, all columns and rows are gradually multiplied by some coefficients. We can always multiply the 
coefficients associated with a certain row to obtain the resultant multiplier for that row, and then we do 
the same for columns. Then we obtain a calibrated value for each transition probability (i.e., every ele-
ment of the table) by multiplying the original value by the resultant multiplier of the row and the resultant 
multiplier of the column. We can summarize these multipliers in a table that will enter the NEMO model 
and then adjust the transition probabilities directly while the model is running. Therefore, once we trans-
fer the appropriate transition probabilities to R, the rest of the assignment is not complicated.  

The most difficult part of this assignment is its beginning, namely the extraction of transition probabilities 
for individual persons. The transition can happen in several different ways. In some cases, the number 
of months a person remains in a particular status is determined upon transition to that status, and the 
transition probabilities are then zero until that time expires. In addition, the person always returns to the 
original status after this period. In this way, for example, the transition to and from a sickness is modeled. 
In other cases, the transition probabilities strongly depend on the occurrence of a certain event or are 
triggered automatically by it; for example, a child birth event always triggers a transition to a child care 
status. Finally, some transitions may occur without an event and their incidence is tested every month 
(for example, transition from employment to unemployment). We must take all these cases into account 
in an appropriate way. 

Event-independent transitions are simple in this respect. Their probabilities are based solely on the 
person's data (such as age, education or initial state) and are not further modified in any way. So we 
can simply include all starting and ending states in the matrix intended for calibration and determine the 
transition probabilities based on the input tables.  

In fact, event-related transitions are a composition of two transitions to target states, a transition given 
by the event and transition conditioned upon the event. So we can express them by the transition prob-
abilities to two possible target states – for example, an employed person may, on the one hand, make 
a transition to a non-working old-age pensioner (i.e., the retirement event also caused a transition from 
employed to unemployed), and, on the other hand, to the state of an employed old-age pensioner (i.e., 
this time the retirement event did not cause a change in the employed state). The initial probabilities of 
these transitions are obtained by multiplying the probability of the event itself (for example, retirement) 
and the probability of a follow-up change (for example, leaving a job upon retirement). Conversely, we 
can decompose the calibrated probabilities into the probabilities of the individual sub-events.  

We use a similar procedure for statuses that have a predetermined duration. Some of the people in this 
status will make a transition to another status because the duration of the status has expired, others 
may make a transition based on a different transition probability. When creating a matrix intended for 
calibration, it is necessary to put these movements together in a common transition matrix, and it is also 
necessary to divide the number again after the calibration back into two different effects. Unlike the 
previous case, this distribution may not be unambiguous if both effects cause a person to make a tran-
sition to the same combination of states (for example, transition from employed student to inactive stu-
dent). It is then up to the calibration analyst to decide what part of the change to attribute to which effect. 
The number of transitions caused by the expiration of a fixed duration can be adjusted by changing the 
parameters of the probability distribution from which they are generated – for example, the duration of 
employment of working students is generated from an exponential distribution with a parameter of 12 
months. Decreasing this parameter will shorten the generated times and thus increase the frequency of 
transitions. (It is necessary to bear in mind that such a parameter adjustment affects more than one time 
point. However, we assume that calibration will only be performed at certain milestones with greater 
spacing over time, for example every five years. If it is possible to set the probability distribution param-
eter for each milestone separately, the calibration performed for one milestone will not have a significant 
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effect on the calibration in subsequent periods due to this spacing, and therefore this influence need not 
be taken into account.) 

We can therefore see that we are able to calibrate all the basic transition modes found in the model 
using the method of bi-proportional scaling . Nevertheless, a few more considerations need to be made. 
The method assumes that for each person, all the states he or she can enter are listed (the sum in each 
row is 1 or, more precisely, it is equal to the number of people the row represents). Mortality should 
therefore be also included. However, we take it directly from external sources and do not want to further 
modify it. Therefore, deaths will not be included in the list of possible statuses. In reality, we will calibrate 
the transition probabilities conditioned upon the person's survival in the period. This also corresponds 
to the design of the NEMO model. We are making a minor error by doing this if mortality varies for 
different groups within the same cohort - for example, for healthy people and disability pensioners. How-
ever, we do not expect this simplification to have a significant impact.  

For a similar reason we also exclude disability pensioners from the set of states. Again, this is a simpli-
fication, as the event of disability commencement entails a change in some transition probabilities. How-
ever, it occurs so rarely that the impact on the overall results of the cohort should remain within accepta-
ble limits.  

An important aspect to consider is the choice of the time period. The problem would be simple if we 
calibrated a new transition matrix for each month. However, this would not be acceptable, on the one 
hand, for capacity reasons, and on the other hand, we do not have such fineness in external projections. 
So we choose a longer period so that we know the numbers of persons in individual states at the end 
of the period (e.g., 5 years) from the external projections. To determine the default transition matrix 
resulting from the model, we upload the transition matrices valid for our cohort in all periods monitored 
from the input data and multiply them (transition probabilities may change with age). We will calibrate 
the transition matrix for this longer period and then we will "take the root" of it again to get a monthly 
matrix. From a mathematical point of view, however, it is not guaranteed that this "taking the root " can 
be done. In this respect, it would be necessary to carry out a more in-depth analysis of whether the 
specific features of the NEMO model allow for this calculation.  

Another way to get the monthly transition matrix is to convert external projection data to monthly transi-
tions. If we know that 𝑁 unemployed people should be added during the year, we can assume a uniform 

increase and calibrate the transition matrix so that 𝑁/12 are added in the first month. We will then use 
this matrix throughout the period until the next milestone when we calibrate the new transition matrix. 
This procedure is, of course, inaccurate: already in the first month the number of persons in individual 
states will change slightly; in the second month, the same transition matrix will be applied to a different 
initial state and the increments in the number of persons in each state will change. The split between 
the model and the external projection will increase over time, and it would be necessary to examine 
more closely whether it remains within acceptable limits. Of course, the differences can be mitigated by 
choosing a more appropriate distribution of the annual change between months, and it makes sense to 
try to find such a version at least for the important transitions (involving many people). Even then, how-
ever, the external projection cannot be expected to be replicated perfectly.  

We can see that while on the theoretical level this method is very simple and straightforward, there are 
significant challenges when connecting it with the NEMO model. These can be dealt with, but the ques-
tion remains whether the advantages of the method justify the demand of the process.  

 Final Evaluation 

Bi-proportional scaling is a method with a solid theoretical foundation and good mathematical charac-
teristics. However, its implementation for MoLSA would be very complicated due to specific properties 
of the NEMO model and Prophet in general.  
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5 Evaluation of the Methods from MoLSA Point of View 

and Recommendation of the Most Suitable Method 

5.1 Selection of the Most Suitable Methods for Individual Parts of the 
Calibration 

In chapter 4 we have analyzed several calibration methods and evaluated each one of them from the 
theoretical perspective as well as in terms of implementation in the Prophet system. In chapter 3.1 we 
decided which variables we want to calibrate (both generally and for each of the two important external 
projections (i.e., the AWG projection and the projection by the Czech Fiscal Council), and we also know 
that a different method may be appropriate for each variable. Now we will summarize all these inputs 
and use them as a basis for selecting the methods we recommend for the specific needs of MoLSA.  

Overall, the calibration will consist of the following steps:  

• Preparatory phase where we take input tables from the external projection (see 4.1); 

• Calibration of employment and unemployment using the sidewalk method (see 4.6); 

• Income calibration using multiplicative scaling (see chapter 4.5 

• Verification of calibration results.  

By choosing this sequence, we ensure that later steps only minimally affect the quantities calibrated in 
the previous steps. In the preparatory phase, we align the initial population, birth rate, mortality and 
disability rates in the first place. A number of other variables depend on their values, but they themselves 
are not affected by them in the NEMO model. In the second phase, we are focusing on the calibration 
of employment and unemployment, which depend on the previous variables, but not on the average 
income. Lastly, we calibrate the average income, which directly or indirectly depends on all other quan-
tities. By choosing this sequence, we significantly reduce the need to go back to the previous steps and 
perform calibration iteratively.  

The main pitfall in this sequence of adjustments is the probability of retirement. This depends on em-
ployment, but it also affects employment itself. Therefore, we carry it out both in the first and second 
step. We explain this procedure in the following chapters. 

 Preparatory Phase of the Calibration 

During the preparatory phase, using the procedures described in 4.1, we take the following inputs from 
the external projection: 

• Mortality and disability rates;  

• Birth rate;  

• Initial population;  

• Number of old-age pensioners.  

In this way, we achieve the reconciliation or approximation of important values, which further appear in 
the projections as key variables. The process of taking the data requires a relatively simple recalculation 
or the data can be taken directly.  

For the initial population, we assume that calibration will not be necessary because the initial numbers 
of employed individuals and old-age pensioners and the total initial population are known from the sta-
tistics of the Czech Statistical Office, so there is a chance that the external projection will build on the 
same numbers as the NEMO model. Should MoLSA ever work with a specific projection where this initial 
consistency is breached, it will be possible to adjust the total number of persons and their composition 
to match the external projection, using one of the following approaches: 

• Model point scaling: in each cohort for which the size of initial population in the external pro-
jection is known, the cohort size in that external projection and in the NEMO model is com-
pared. The number of persons in model points is adjusted accordingly. If e.g., the external pro-
jection has 20% more persons in a given cohort, in the NEMO model the number of persons in 
the model point (INIT_MEM_IF) will be set to 1,2 for persons falling in this cohort. 
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• If the model user needs to maintain the approach that one model point always represents ex-
actly one participant, it is possible to adjust the size of the population by removing or duplicat-
ing, as the case may be, some appropriately selected model points.  

Even after taking the inputs, the differences due to the randomness of the NEMO model will remain 
between the projections. At the same time, we will observe a deviation in the number of old-age pen-
sioners exceeding the impact of randomness because this projection uses simplifications to model the 
number of pensioners which should not be taken to the NEMO model. However, there will be an ap-
proximation of the average retirement age, which we will improve even further performing calibration of 
employment and unemployment 

 Calibration of Employment and Unemployment 

We will calibrate employment and unemployment using the sidewalk method described in chapter 4.6. 
It has many advantages: it is not too hard to implement and does not require preparatory runs or creation 
of an external tool. It also exhibits acceptable mathematical properties. The method is illustrated on a 
model created in MS Excel attached hereto as Appendix B.3.  

Another important advantage of the method is its ability to calibrate unemployment together with em-
ployment. Therefore, we will calibrate these two variables together whenever they are available in the 
external projections.  

An important decision in terms of the method implementation is the choice of the coefficient 𝑘 determin-

ing the speed of the calibration. Generally, we want to find the lowest 𝑘 such that the calibration targets 
can still be achieved (with sufficient accuracy). However, solving this problem analytically is not easy, 
but instead we recommend trying a few values first in the prototype and then in the live model and finding 
k empirically. The coefficient value can then remain stable also for further calibrations until the model 
changes significantly; therefore, it is recommended to repeat its derivation only in connection with major 
legislative changes, major interventions in the modeling approach (for example, a significant expansion 
of the set of information known about each individual), or always after a few years pass.  

During the selection of the coefficient, it is also necessary to monitor the extent to which the probability 
for individual persons has changed by the calibration. A useful guide in this respect may be to create a 
histogram of the probability difference before and after the calibration, expressed in percentage points 
(i.e., for example, one histogram column may correspond to a probability increase between 10 and 20 
percentage points). If there are many significant increases as well as many decreases, it means that the 
method significantly distorts the life paths of individuals and 𝑘 is too high. In such a case, it may make 
sense to lower the coefficient even if it means that the aggregate values will not be calibrated so well. 
(Nevertheless, we expect that practically the reduction of 𝑘 in such situation will not substantially impair 
the accuracy of the calibration.)  

None of the other methods for calibration of employment can be recommended. Calibration by bi-pro-
portional scaling (chapter 4.8) and iterative model runs (chapter 4.3) are difficult to implement and com-
promises might be necessary. The methods of multiplicative scaling (4.5) and refinement of average 
values (4.4) are not suitable for calibrating the probabilities of interrelated events depending on multiple 
factors. Calibration method using the residual population (4.2) only works when we assign the same 
value to all members of a certain group, and finally, the alignment by sorting method (4.7) completely 
breaches the relationship between the explanatory and the dependent variable.  

As the adjustment of the retirement probabilities described in the previous chapter was made on the 
basis of the model's results before the calibration of employment which itself affects retirements (via 
insured periods), it is now necessary to set these probabilities again. We will use the same method as 
in the beginning. Therefore, the average retirement ages will approximate.  

 Calibration of Incomes 

We recommend using the multiplicative scaling described in chapter 4.5 for income calibration. This 
method is itself easy to implement and MoLSA already uses it to calibrate incomes: the average income 
in each year is multiplied by the so-called residual wage inflation to match the values from the external 
statistics. Thus, it suffices to extend the existing functionality so that the income can be calibrated not 
only for the whole population in a given calendar year, but also by age cohorts. This is not a difficult 
modification.  
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Moreover, multiplicative scaling, as the only one of the calibration methods described, perfectly pre-
serves the form of the probability distribution of incomes resulting from the model before calibration. Its 
only disadvantage is that it weakens the relationship between the inputs entered into the model (specif-
ically wage inflation and development of the person’s income during his or her career) and the simulated 
income. This, however, is common to most methods. To avoid this weakening, it would be necessary to 
choose a very complicated procedure, for example, to use iterative model runs (chapter 4.3and change 
the employment rate of persons in each income grade so that the employment calculated for each cohort 
would still correspond to the values taken from the external projection, but the average income would 
change. However, there is no guarantee that such an effort would lead to the goal without introducing 
another type of inconsistency into the calculation. Therefore, we do not recommend this alternative.  

Since the income of a person does not affect any other significant variable other than the amount of 
pension (which we do not want to calibrate, see chapter 3.1) and the average income in the cohort, on 
the other hand, depends on who is at what point in his or her life path, we will include the calibration of 
incomes as the last step after the calibration of all other variables, in particular employment.  

5.2 Algorithm of the Complete Calibration 

Now that we know which calibration method we want to use for what part of the problem, we finally 
proceed fully with the practical aspects and write down the sequence of steps that need to be taken 
during the calibration. In the process, we will distinguish the procedure for the two important external 
projections mentioned at the beginning of this study.  

 Reconciliation with the AWG Projection 

Defining the groups and the outputs of the projection 

Because the simulation of the AWG projection is performed by cohorts according to age and sex, we 
divide the NEMO model into cohorts using an SP code which represents the respective sex (SEX_MP) 

and year of birth (initial_year − INIT_AGE_MP). The lower limit of the interval for the year of birth is 

calculated as initial_year − 𝑀𝐴𝑋(INIT_AGE_MP). 

To calibrate the incomes, two variables must be included in the output variables – in the first one, the 
monthly incomes are added up for each currently employed individual from the cohort, in the second 
variable, the number of months in which the individual was employed is recorded. The values of these 
variables will then be used to calculate the average monthly income.  

As the main output of the projection is the amount of pension expenditures by type of pension, variables 
in which the addition of the pensions paid for individual types of pensions for the corresponding calendar 
year occurs will be determined as further output parameters of the model. 

Taking the input tables from the preparatory part of the calibration 

Tables for mortality and birth rates by age and sex will be taken from the demographic projection of 
EUROSTAT, which is one of the main inputs of the AWG projection. 

The overall population data used by the AWG projection will be compared with the inputs of the NEMO 
model. If necessary, we will adjust the input population by omitting or duplicating randomly selected 
individuals with an appropriate profile.  

The probabilities of disability, broken down by sex and age, are calculated as the ratio of the number of 
newly awarded disability pensions to the population reduced by existing disability pensioners. All nec-
essary data represents inputs to the external projection, which can be directly taken from it. The calcu-
lated probabilities will be uploaded to the input tables Morb_females.fac and Morb_males.fac which are 
broken down by age and calendar year of the projection.  

As input, the model also loads the table of cohort probabilities of disability termination, the values of 
which are calculated from the AWG projection data as follows: 

• We add up the number of new pensioners in year 𝑥 + 1 and surviving pensioners from year 𝑥;  

• We subtract the number of disability pensioners that AWG projected in year 𝑥 + 1; we assume 
that this number will be lower than the above-mentioned sum;  
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• The differences obtained in each cohort represent terminated disabilities. By comparing the 
number of terminated disabilities from a certain year with the number of disability pensioners 
at the beginning of that year, we get the probabilities of termination of disability.  

In table ret_age.fac, we set the retirement age such that the average retirement age observed in the 
NEMO model corresponds to the effective retirement age used in the AWG projection. Furthermore, in 
table retirement.fac, we set the probabilities of early retirement and retirement postponement for each 
cohort so that, after applying these probabilities to a population of persons who meet the statutory re-
tirement conditions in that age, we get the numbers corresponding to the NEMO model run used for 
routine reporting (i.e., before any calibration). To calculate the values in both tables, we will use the 
NEMO model run before calibration. A more detailed description of this procedure is presented in chap-
ter 4.1. 

Calibration of employment and unemployment 

The calibration target is the number of employed and unemployed individuals in each cohort by age and 
sex, which can be read directly from the AWG database. We enter these values into the input table, 
which will be used as a basis for calibration in the NEMO model using the sidewalk method. Thus, in all 
follow-up outputs from Prophet, the numbers of employed and unemployed individuals will be reconciled 
with the external projection.  

After this step, it is necessary to repeat the calibration of the retirement probabilities in the same way as 
performed at the beginning of the calibration.  

Calibration of the average income 

At the input, the table of average income is uploaded into the model from external data, which will be 
used to calculate the scaling coefficients. The tables of average income broken down by age and sex 
can be obtained directly from the AWG projection.  

After the first model run, we calculate the average monthly income from the output database of results 
for each cohort and each calendar year of the projection, i.e., we divide the values of the variable rep-
resenting the sum of average incomes by the corresponding number of months worked.  

Then we will compare this output table with the table of external average incomes. This will produce the 
scaling coefficient values that we will upload into the model as an additional input table. Then we start 
the second run, in which we multiply the average income of the cohort in each year by the corresponding 
scaling coefficient. This run already produces the calibrated values. 

 Reconciliation with the Projection of the Czech Fiscal Council 

Defining the groups and the outputs of the projection 

Using the SP code, we define cohorts by sex and birth year. 

The same variables as in the case of calibration against the AWG projection are determined as model 
output variables. We will list the variables needed for the calibration of incomes and variables capturing 
the total volume of benefits paid according to the type of benefit.  

Taking the input tables from the preparatory phase of the calibration 

Since the projection of the Czech Fiscal Council is based on the demographic Projection of the Popula-
tion 2018 – 2100, the tables of: 

• mortality, disability and birth rates,  

• count of the initial population,  

broken down by age and sex should correspond to the available data from the databases of the Czech 
Statistical Office or the Czech Social Security Administration. However, it is necessary to compare them. 

In the NEMO projection, the number of disability pensioners is controlled both by the probability of oc-
currence of disability and by the probability of its termination. Since the projection of the Czech Fiscal 
Council only provides the total cohort numbers of disability pensioners and the number of new or termi-
nated pensions is unknown, there is generally an infinite number of solutions for these two variables that 
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produce the required total number of pensioners. Therefore, we will leave the probabilities of termination 
of disability unchanged from the setting used in the basic projections of MoLSA and calculate the prob-
abilities of occurrence thereof as follows: 

1. Number of disability pensioners in year 𝑥 + 1: 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑𝑥+1 will be calculated as:  

𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑𝑥 ∗ (1 − 𝑝𝑟𝑜𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) + 𝑝𝑟𝑜𝑏𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 ∗ (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑥+1 − 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑𝑥+1)  

(The choice of indices, i.e., which values are taken from which year, needs to be carefully considered 
and specified consistently with other relevant conventions used in the NEMO model.)  

2. In this equation we know all values except the probability of occurrence of disability (the num-
bers of individuals in the population and the numbers of disability pensioners are taken from 
the external projection), and so it can be easily calculated.  

To reconcile the number of old-age pensioners, we will proceed similarly to the AWG projection, the 
difference being that we set the retirement age value to correspond to a mother with two children for all 
women. For a more detailed procedure we refer to chapter 4.1.  

Calibration of employment 

The projection of the Czech Fiscal Council does not directly report the number of employees, but the 
number can be derived from the total income of the pension system and the average wage. In this way, 
however, we will only find an aggregate target for men and women; information on employment by 
cohorts is not available.  

Therefore, we propose spliting this aggregate target into cohort targets before the first run. We will rely 
on the results after the first model run, i.e., after taking the input tables from the previous points, but 
before the next calibration. The employment rates for the calendar year implied by this calculation will 
be all multiplied by the same coefficient so that the overall employment rate of the male or female cohorts 
corresponds to the overall calibration target for men or women, read from the projection of the Czech 
Fiscal Council. We will do the same for unemployment.  

Subsequently, the calibration proceeds similarly as in the case of AWG, including re-calibrating the 
probabilities of retirement in the same way as used at the beginning of the calibration.  

Calibration of the average income 

The sequence of steps during the calibration of the average income remains the same in reconciliation 
with the projection of the Czech Fiscal Council as in the case of reconciliation with the AWG projection, 
see chapter 5.2.1 section.  
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6 Estimated Timeframe and Complexity of the Pro-

posed Solution 

At the end of the study, we provide our estimate of the time and financial resources required to imple-
ment the recommended calibration method in the current NEMO model. All of the estimates below are 
based on the following assumptions: 

• Calibration will be performed to one of the two external projections mentioned in Appendix Ap-
pendix A. 

• The calibration procedure recommended in the previous chapter will be selected without fur-
ther extensions. The recommended methods have been chosen with regard to the expected 
efficiency and difficulty of implementation, therefore, the choice of some other methods can 
change the difficulty even by orders of magnitude. 

• A complete NEMO model and its run including the input preparation tools will be available as a 
starting point.  

• Functionality of the NEMO model will not change significantly from the version valid at the time 
of this study;  

• The calibration must not change (“break”) the calculation formulas and functionalities imple-
mented in the model (for more information see chapter 2.3). 

Calibration of a model similar to NEMO is a difficult task that represents a great deal of uncertainty for 
the solving team. Even with all theoretical preparation, it is not possible to fully predict how the individual 
decisions will affect the various monitored states during calibration. If the implementation objectives 
were set in advance in the form of the required degree of approximation of the projections, it would 
present a risk for the solving team that no external contractor might be willing to undertake.  

Therefore, we recommend splitting the implementation into three parts:  

• In the first part, the inputs to the NEMO model will be adjusted so that they approach to the 
assumptions of the external projection; at the same time, the NEMO model will be modified to 
be ready to process these new inputs in adjusted formats;  

• In the second part, the selected calibration methods will be technically implemented into the 
NEMO model and all necessary technical tools will be prepared;  

• In the third part, the employment, unemployment and average income will be calibrated using 
the methods implemented in the previous point. This will therefore include also a search for 
suitable parameters of the used methods and analysis of the results.  

We recommend that a project committee composed of MoLSA experts and the external contractor work 
together on the project. Instead of setting fixed calibration targets already at the beginning of the project, 
we recommend first setting indicative targets and then, first at the end of the aforementioned first and 
second phases and then during the third phase (after the first iteration of parameter setting and calibra-
tions), we recommend that the project committee work together to assess with what expectations to 
proceed to the next phase, in the light of the results so far, and whether the planned approach or objec-
tives need to be adjusted. The work on the first two phases and a more thorough analysis of the portfolio 
associated with it may bring an insight which will imply the need to adjust the initial expectations, for 
example, in terms of achievable approximation to the calibration targets.  

At the same time, note that external support is, in our opinion, mainly necessary in the second phase, 
because it is the only one that directly relates to the development of new tools and implementation of 
new functionalities in Prophet. The other phases mostly contain the preparation of the assumptions and 
repeated runs of the model, which are tasks for which MoLSA analysts are fully technically equipped.  

Upon these considerations, we present an estimated implementation schedule divided into the above-
mentioned three phases. The timing is only approximate, depending mainly on the availability and quality 
of the input data and on the size of the implementation team. 

The range of the estimates in the first and third phases is based mainly on the fact that any calibration 
requires reruns and subsequent detailed analyses of the results of the entire model, and in the case of 
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the NEMO model, one run of this model alone (without potential input adjustments) lasts approximately 
one day.  

Step Comment Duration 
(calendar 
weeks) 

Phase 1 

Specification of 
calibration tar-
gets 

Specification of the calibration approach chosen and its confir-
mation with the Client. 
Selection of the external projection which will be the calibration 
target (e.g., AWG). 
Mapping of data requirements for calibration of the target val-
ues (=what values and in what segmentation are needed for the 
steps below; specification of the sources thereof; is any source 
missing? What will we replace it with?). 
Specification of target values for the individual variables moni-
tored, projection years and segments (=collecting values from 
the source into tables in a uniform format for further pro-
cessing).  
Setting the initial indicative targets for the calibration rate.  
Approval of the specified values with the Client. 

6 

Taking the inputs 
- DCS - size and 
composition of 
the initial popula-
tion, birth rate 
and immigration 

Existing population: target for each segment will be divided into 
2 sub-segments: individuals from amended INEP, new individu-
als. The numbers of persons from INEP will be calibrated if nec-
essary.  
The numbers of "new individuals" will be calibrated by appropri-
ately adjusting the target NI numbers and their target distribu-
tion in age categories.  
 
Future births and immigrants: target numbers determined ac-
cording to target birth rate/immigration. 
 
Re-run of all DCS for the preparation of model points, including 
design of new SPCODEs for tracking results by key segments, 
incl. random sorting of MP.  
 
Checking the results (= checking achievement of targets) and 
discussion thereof with the Client. 

6 

Taking the inputs 
from the external 
projection 

Preparation of tables for Prophet (taking the mortality rates, ad-
ditional calculation of disability rates and retirement age as-
sumptions).  
Run with calibrate inputs, checking the results and discussing 
them with the Client.  
 
The project committee will jointly evaluate with what expecta-
tions and approach to proceed to the next phase.  

4 

  Phase 2 

Implementation 
of the sidewalk 
method for the 
calibration of em-
ployment and un-
employment 

Specification of model functionality modifications and approval 
thereof with the Client.  
Model functionality modification – implementation of the calibra-
tion method in the code.  
Preparation of tables for Prophet (parametrization of the 
method, targets of employment/unemployment /inactivity).  
Determining the range of achievable values: run without calibra-
tion (after the previous calibration steps), run with maximum 
calibration (𝑘 = +∞).  

5 
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Implementation 
of the multiplica-
tive scaling 
method for the 
calibration of sal-
aries 

Specification of model functionality modifications (entering the 
scaling factors) and approval thereof with the Client.  
Model functionality modification – implementation of the calibra-
tion method in the code.  
Preparation of tables for Prophet (parametrization of the 
method, targets).  

2 

Delivery of the 
model 

Delivery of the modified model to the Client. 
 
The project committee will jointly evaluate with what expecta-
tions and approach to proceed to the next phase. 

1 

Phase 3 

Calibration of 
employment us-
ing the sidewalk 
method 

Determination of the target level of calibration (k), run with the 
target calibration  
Checking the results and discussing them with the Client.  

4 

Calibration of sal-
aries using the 
multiplicative 
scaling method 

Run with the target calibration.  
Checking the results and discussing them with the Client.  
 
The project committee will jointly evaluate, based on the initial 
results of this phase, with what expectations and approach to 
complete the calibrations. 

2 

Checking the 
overall results 
and completing 
the calibrations 

Completion of the calibrations according to the conclusions of 
the previous paragraph. 
Detailed analysis of calibration impacts not only on calibrated 
but also on non-calibrated variables – in particular retirements, 
pension amounts, etc.; across the segments as well as in total.  
Approving the results with the Client.  

8 

Additional as-
pects 

Based on experience with similar tasks, we expect additional 
tasks or obstacles to come up during more thorough analyses 
of data, the resolution of which cannot be planned in advance of 
the project. We therefore recommend allowing for sufficient re-
sources. 

6 

Documentation Documentation of the final approach.  2 

Delivery and 
training 

Training of the Client in the technical execution of all steps, 
demonstration of the use of all tools developed (preparation of 
tables, etc.) and functionalities in the model.  

2 

Total  48 

Table 3: Schedule of implementation of the proposed solution 

According to our estimates, an experienced team is able to perform all tasks at the following prices if 
the above conditions are met:  

• The first phase approximately for 3 million CZK not inclusive of VAT;  

• The second phase approximately for 2.5 million CZK not inclusive of VAT;  

• The third phase approximately for 5 million CZK not inclusive of VAT.  

In all cases, this is the price at which the implementation of the relevant phase would be delivered in full 
by an external supplier. 

These price estimates are based on the assumption that the implementation will be carried out within 
the above time frame by a team of the following composition (unless otherwise stated, we assume for 
each of the persons full capacity during the relevant delivery phase): 
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• Phase 1 

o Methodology specialist 

▪ Task: based on the assumptions of the calibration method and the method of prep-
aration of the assumptions used in NEMO, prepares the specifications of the cali-
bration targets, develops the approach methodology and checks the correctness of 
its implementation. 

▪ Appropriate qualification: experience with development or operation of a microsim-
ulation model of pension or social system of similar scope. 

o DCS modeling specialist 

▪ Task: adjusts the DCS input preparation programs as necessary 

▪ Appropriate qualification: experience in developing programs in DCS in the range 
of tens of millions of data records. This person will not need to be involved during 
the entire delivery of this phase. Therefore, if the Methodology specialist has the 
necessary qualifications, this activity can also be provided by the Methodology spe-
cialist in cooperation with one of the analysts. 

o Two analysts 

▪ Task: technically create tools for taking over inputs based on the Methodology spe-
cialist’s specification. 

▪ Can be occupied by junior staff.  

• Phase 2 

o Methodology specialist 

▪ Task: based on the knowledge of the model and selected calibration methods, leads 
the development of the technical specification and subsequently checks the cor-
rectness of the implementation according to this specification. 

▪ Appropriate qualification: 5 years in a position working with the Prophet system, 
experience with the development or operating a microsimulation model of similar 
scope. 

o Senior Prophet modeling specialist 

▪ Task: implementation of specified methods into the NEMO model. 

▪ Appropriate qualification: more experienced staff (3-5 years in a position working 
with the Prophet system), as it is necessary to correctly identify all places in the 
current code where changes need to be made, taking into account the structure of 
interdependencies between variables. 

o Junior Prophet modeling specialist 

▪ Task: support of the senior specialist in implementation and testing. 

▪ Appropriate qualification: at least 1 year in a position working with the Prophet sys-
tem. 

• Phase 3 

o Methodology specialist 

▪ Task: based on the modeling method used in NEMO and the calibration effects, he 
or she determines target levels of calibration, designs approaches and analyzes to 
evaluate the success of the calibration, he or she is able to interpret the results and 
evaluate how to modify the approach. 

▪ Appropriate qualification: experience with the development or operation a microsim-
ulation model of pension or social system of a similar scope. 

o Two analytics 

▪ Task: create tools to modify inputs and check results, run model runs, perform anal-
yses, and verify that results meet expectations. 
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▪ Appropriate qualification: experience with processing outputs from the Prophet sys-
tem. 
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 Important External Projections 

A.1. Ageing Working Group (AWG) 

Based on the document entitled The 2018 Ageing Report published by the European Commission, the 
projections for pensions will be run by the Member States of the European Union using their own national 
pension system model(s) and using commonly agreed assumptions of AWG. The report was published 
in 2018 and its base year for the projections is 2016.  

This report is the same for each Member State and includes projections of 145 variables. In order to 

complete this report, Member States will provide a detailed description of the projections in their report-

ing sheets. 

The reporting sheet of the Czech Republic named final_country_fiche_cz.pdf contains inputs, outputs 

and assumptions, which can be divided into three main areas.  

The first one is a demographic projection of EUROSTAT, divided by age and sex. The current projection 
foresees a decline in the population in the long run.  

Projection of the labor market, Cohort Simulation Model (CSM), is used as the second important input. 
It includes mainly the following variables:  

• Projection of the rate of economic activity of women/men/persons aged  

• Projection of the rate of employment of women/men/persons aged (by combining information 
on economic activity and employment, unemployment data can also be obtained) 

• Mean age of the labor force 

• Projection of the proportion of working individuals divided by age in the labor force 

• Projection of the average retirement age of men and women 

• Projection of the average pension insurance period (women, men and total) 

• Projection of the pension duration 

• Projection of the effective retirement age 

• At present, the effective retirement age is above the statutory retirement age. However, future 
developments assume that the effective age will be lower than the statutory threshold, which 
will add new numbers of inactive individuals (we assume that a person will leave the labor 
market when he or she has reached the effective age). We also assume that these inactive 
individuals will become early retirement pensioners, even if they are penalized for that, if they 
are entitled to (early) old-age pension. 

• In addition, we expect that, in line with this trend, more and more people will tend to withdraw 
their capital savings from the third pillar and therefore opt for a pre-retirement system which 
will become increasingly popular. 

• Projection of the number of employees (women, men and total) 

• Projection of the personal assessment base (women, men and total) 

• Projection of the share of personal assessment bases and the average salary (women, men 
and total) 

• Projection of the average pension insurance period (women, men and total) 

• Projection of the calculation base coefficient (women, men and total) 

• Number of contributors to pension insurance 

• Projection of the amount collected for the pension insurance from: 

o the employee 

o the employer 

The AWG projection is also complemented by several additional assumptions and inputs:  
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• Number of existing pensions divided by type of pension, age and sex  

• Number of new pensions divided by type of pension, age and sex 

• Average pension benefit divided by type of pension, age and sex 

• Average newly awarded pension benefit divided by type of pension, age and sex 

• Number of new pensions (divided by type of pension) for a given combination of personal as-
sessment base and insurance period  

• Valorization of pensions and the valorization index. It is done annually in January. It is set in 
such a manner that the basic pension amount is 9% of the gross average monthly wage (the 
old percentage before the law modification in 2018).  

• Assumption of zero taxation of pensions (the law grants most pensions an exemption from 
tax) 

• Consumer price index (CPI) of pensioners – it is assumed to be the same as the cost of living 
index of pensioners’ households 

• Projection of the gross and net pension expenditure as a percentage of GDP and total in EUR 
divided by type of pension. A distinction is made between the flat-rate component of gross ex-
penditure and the component dependent on income.  

• Projection of the disability rate by age groups  

• Projection of the benefits ratio (the ratio of the average pension benefit to the average wage) 

• Projection of the compensation rate (the ratio of the newly awarded pension benefit to the av-
erage gross wage at the time of retirement) 

• Projection of the number of pensioners  

• Projection of the proportion of pensioners (men and women) and inactive population 

• Projection of the gross expenditure on newly recognized old-age pension and early retirement 
pension benefits (women, men and total) 

• Projection of the number of newly awarded old-age pension and early retirement pension ben-
efits (women, men and total) 

Total expenditure on a particular type of pension is calculated according to the following formula: 

𝑝𝑒𝑛_𝑒𝑡 = ∑(𝑝𝑒𝑛𝑡
𝑔,𝑠

− 𝑛𝑝𝑒𝑛𝑡
𝑔,𝑠

) ∙

𝑔,𝑠

𝑝𝑒𝑛_𝑣𝑡−1
𝑔,𝑠

∙ (1 + 𝑖𝑛𝑑𝑡) + 𝑛𝑝𝑒𝑛𝑡
𝑔,𝑠

∙ 𝑛𝑝𝑒𝑛_𝑣𝑡
𝑔,𝑠

, 

where: 

• 𝑔 is the population generation (divided by calendar year) 

• 𝑠 is the respective sex (male/female) 

• (𝑝𝑒𝑛) is the number of pensions calculated as 

𝑝𝑒𝑛𝑡
𝑔,𝑠

= 𝑝𝑒𝑛_𝑠𝑡
𝑔,𝑠

∙ 𝑝𝑜𝑝𝑡
𝑔,𝑠

, 

where 𝑝𝑜𝑝𝑡
𝑔,𝑠

 is the value of the respective population and 𝑝𝑒𝑛_𝑠𝑡
𝑔,𝑠

 is the proportions of the re-

spective pension by age, which are calculated on the basis of the conditional probability that the 

individuals defined by the pair (𝑔, 𝑠) become recipients of the pension in question 

• (𝑛𝑝𝑒𝑛) is the number of newly awarded pensions, which is defined as 

 𝑛𝑝𝑒𝑛𝑡
𝑔,𝑠

= 𝑝𝑒𝑛𝑡
𝑔,𝑠

− 𝑝𝑒𝑛𝑡−1
𝑔,𝑠

∙ (1 − 𝜀𝑡
𝑔,𝑠

),  

             where 𝜀 is the specific mortality rate determined by sex and generation 

• (𝑝𝑒𝑛_𝑣) is the average value of the respective benefit. It is calculated as the weighted average 
of the average value of the benefit from the previous period and the average value of the 
newly awarded benefit: 
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𝑝𝑒𝑛_𝑣𝑡
𝑔,𝑠

=
𝑝𝑒𝑛𝑡

𝑔,𝑠
− 𝑛𝑝𝑒𝑛𝑡

𝑔,𝑠

𝑝𝑒𝑛𝑡
𝑔,𝑠 ∙ 𝑝𝑒𝑛𝑣𝑡−1

𝑔,𝑠 ∙ (1 + 𝑖𝑛𝑑𝑡) +
𝑛𝑝𝑒𝑛𝑡

𝑔,𝑠

𝑝𝑒𝑛𝑡
𝑔,𝑠 ∙ 𝑛𝑝𝑒𝑛𝑣𝑡

𝑔,𝑠 

• (𝑛𝑝𝑒𝑛_𝑣) is the average value of the newly awarded benefit, defined as follows: 

𝑛𝑝𝑒𝑛_𝑣 = 𝑓𝑟𝑐 + 𝑒𝑟𝑐, 

where 𝑓𝑟𝑐 is the assessment base and 𝑒𝑟𝑐 is the percentage. For the calculation of the per-
centage, we assume that the reduction limit develops simultaneously with salaries. 

The basic input for the calculation of the percentage is a table that divides the population ac-
cording to the assessment base and the period of participation in pension insurance. For each 
combination of these two variables we know the number of persons who have achieved them 
and, at the same time, we can calculate the corresponding percentage. The average percent-
age is determined by simple weighing of all values by the numbers of people read from the 
table. The values in the table are a part of the CSM projection on which the AWG projection is 
based.  

• (𝑖𝑛𝑑𝑡) is the statutory valorization factor 

A.2. Czech Fiscal Council 

In the first step, the projection of the Czech Fiscal Council (Hlaváček and others, 2019) deals with the 
number of recipients of pension benefits and in the following step it deals with the projection of the 
amount and volume of pension benefits paid.  

Projection of the number of old-age pensions 

The projection of the number of old-age pensioners is based on the demographic structure of the pop-
ulation which is determined by a projection of the Czech Statistical Office (Population Projection 2018 – 
2100 document, specifically). 

The main input for the projection of the number of old-age pensions is the (revised) rate of retirement. It 
is the ratio of the number of old-age pensioners at the end of the calendar year according to the infor-
mation from the Czech Social Security Administration (ČSSZ) to the number of people of the given age 
as of 1 January of the following year according to the information from the Czech Statistical Office, 
reduced by the number of disability pension recipients of the given age – this is a momentary situation 
at the end of the year and the movements, if any, are not recorded. The number of disability pension 
recipients is also projected within the projection of number of disability pensions. 

Retirement rates depend on the age of the person and on the age at which the person reaches (or has 
reached) the statutory retirement age. If there are two different retirement ages in a particular year, we 
consider that the retirement age for that year is the weighted average of the two retirement ages (where 
the weights are the number of months during which each retirement age existed). This dependence of 
the retirement rate on the distance from retirement age will be called the retirement curve. For further 
calculations, we will use the retirement curve calculated as the average of the retirement curves for the 
period 2013 – 2017. This period is suitable both in terms of the availability of data and the condition of 
the economy – it included periods of economic boom and the period of ending recession; the average 
values should therefore not be significantly burdened by the effects of the economic cycle.  

Furthermore, retirement rates are divided by sex. For the calculation of the retirement age of women, 
the assumption is that each woman has two children.  

For the period of increasing retirement age (until 2030), the retirement age curves for the currently valid 
retirement age in the given year are used for the projection of the number of old-age pensioners. From 
2030, pension curves are used that relate to the personally relevant retirement age. 

A certain number of pensions cease to exist every year on the basis of mortality assumptions. The 
number of newly awarded pensions is calculated by additional recalculation from the total number of 
pensions in a given year, the total number of pensions in the previous year, and the number of pensions 
that ceased to exist. This division is important for determining the amount of pensions.  

The following effects are only considered implicitly in the projection (they are already part of the pension 
rates) or are not considered at all: 

• Early retirement pensions  
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• Potential effect of pre-retirement from the third pillar (for example, some people may use pre-
retirement instead of retiring early) 

• Unification of the retirement age for women (cessation of the majority of preferential deals for 
women according to the number of children raised).  

Projection of the number of disability pensions 

Disability rates are divided by age cohort and are based on historical disability rates and the estimated 
postponement of the retirement age. The result is the following values: 

• Up to 55 years as the average of disability rates in the period 2015 – 2017 or, as applicable, 
only for the year 2017 if this value was lower 

• For the age of 55 years, we assume disability of 15.5% for women and 15.3% for men 

• Two years before reaching the retirement age – maximum of the disability rates. It is deter-
mined as the maximum of the disability rates from 2017 (approximately 18% for women and 
approximately 20% for men). 

• A uniform increase is assumed for the age of 55 years up to two years before reaching the re-
tirement age  

• For the age of 64 years, the disability rate is at the level of the average for the period 2013 – 
2017 

• For the age of 65 years and higher, a zero disability rate is assumed because disability pen-
sion is converted into old-age pension upon retirement. This limit is shifting as the retirement 
age increases.  

These disability rates will only give the total number of disability pensioners. For the purpose of classifi-
cation thereof into individual disability degrees, we assume that the share of individual disability degrees 
in the total number of disability pensioners will remain unchanged throughout the projection period.  

Projection of the number of survivors' pensions 

For orphan's pensions, it is assumed that 1.75% of people aged 0 to 21 receive it.  

Widow's and widower's pensions paid separately are projected based on the assumption that the pro-
portion of these pensions for persons over 21 years of age will be constant. It is not modelled for younger 
persons. The relevant coefficient is determined as the average over the last three years available, with 
values of 0.18% for men and 0.8% for women. 

In the case of widow's and widower's pensions paid in conjunction with an old-age pension or disability 
pension, an age-specific rate is applied (separate for men and women) from the sources of MoLSA and 
the Czech Statistical Office for the year 2017. However, it is adjusted for the postponement of the stat-
utory retirement age (until 2030) and prolongation of life expectancy (which will reduce the number of 
pensions). 

Results of the projection of the number of pensions 

The projection of the number of pensions is carried out for the following versions of the demographic 
projection: 

• Medium 

• High 

• Low 

• Medium with zero migration balance 

• Medium with the so-called tied retirement age (the same retirement age for men and women is 
set so that, for those who reach it, the period they spend in retirement is 25% of the total life 
expectancy). 
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Amount of the old-age pensions 

The amount of newly awarded pensions is determined by reference to the ratio to the average wage. 

This ratio is part of the model's assumptions. For men, a stable ratio of 46.6% is expected for the period 

2017-2050, followed by a decline to 44.8%, which will take place in the period 2050 - 2055. The ratio 

will then remain at this value until the end of the projection. For women, this ratio is gradually increasing 

from a baseline of 39.6% to 44% in 2030. It will remain at this level until 2050, then drop to 42.2% 

between 2050 and 2055 and remain at this value until the end of the projection.  

The valorization of pensions already awarded is based on real wage growth, inflation rate, and the cost 
of living index of senior households. As a result, it is assumed that the pension is annually increased by 
real wage growth increased by 0.3 percentage point.  

We assume that the average amount of lapsed pensions is 95% of the average amount of old-age 
pensions. 

By linking all these assumptions, we will get the ratio of the amount of old-age pension to the average 
wage. The projection results range between 38% - 40.1% with a significant increase in the period 2030 
– 2040. Based on this development and the development of the number of old-age pensioners, we will 
get the projection of old-age pension expenditure as a percentage of GDP. 

Disability pensions 

To determine the amount of disability pensions, a constant ratio between the average disability pension 
of a given degree and the average old-age pension is assumed, with the starting year for determining 
the ratio being 2018.  

Survivors' pensions 

The amount of survivors' pensions is determined as a percentage of the average old-age pension over 
the last three years. The percentages used are as follows: 

• 51.2% for orphan pensions 

• 57.2% for widower's pensions paid separately 

• 64.8% for widow's pensions paid separately 

• 16.2% for widower's pensions paid concurrently 

• 21.3% for widow's pensions paid concurrently 

Projection of pension system income 

The income of the pension system is directly based on the development of wages and salaries, which 
is taken from the Long-Term Macroeconomic Projection of the Czech Republic produced also by the 
Office of the Czech Fiscal Council. The share of wages and salaries in GDP is expected to increase 
gradually during the projection, from the current 8.7% to approximately 9.5%.  

Projection of the labor market 

The labor market is modeled only indirectly in the projection of the Czech Fiscal Council, through the 
income of the pension system and the retirement rate. However, there is an assumption available in the 
model of the average wage and the total income of the pension system. From there, the number of 
employed individuals can be determined very easily. It would be more difficult to derive the number of 
unemployed individuals from the projection.   
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 R code 

B.1. Verification of the refinement of average values 

The refinement of average values method is described in Chapter 4.3. This chapter introduces a process 
where we start with a uniform distribution 𝑈 on the interval [0,1], add a certain random variable 𝑋 and 
require the sum to be uniformly distributed again. Functionality of this method was verified by a simula-
tion in R, where we choose normal distribution and beta distribution for 𝑋. Here is the code that can fully 
replicate this verification.  

The code requires the tmvtnorm and truncnorm packages, which allow to simulate from a constrained 
normal distribution (i. e. simulate from a normal distribution, and whenever the simulated value does not 
lie within the desired interval, in our case [−1,1], the value is not used and a new one is simulated) and 
bimodal distribution. If these packages are available, the code can be executed simply by copying it to 
the R console. 

 

# A script to verify the uniform distribution of the results for the re-

finement of average values method 

set.seed(1234) 

# We use package tmvtnorm to simulate the constrained normal distribution 

require("tmvtnorm") 

 

# Case 1 – normal distribution 

n <- 1000000 # number of simulations 

U <- runif(n,0,1) # uniformly distributed random variable 

X <- rtmvnorm(n,mean=0,sigma=1,lower=-0.5,upper=0.5) # normally distributed 

random variable 

 

# Illustration of properties of random variable X 

# To visualize variable X, we firstly need to order its values by size. 

That is the reason to depict X[order(X)] in the graph 

plot(qnorm, type="l", main="Percentile function of the normal distribu-

tion",xlab="Percentile", ylab="Value of the percentile",xlim=c(0,1)) 

hist(X[order(X)], breaks=seq(from=-1, to=1, by = 0.02),freq=F, ma-in="His-

togram of normal distribution", xlab="Value of the distribution", 

ylab="Probability density") 

 

# Calculation of the resulting distribution 

V <- U + X # the sum before modification – its values are from -0.5 to 1.5 

and it is not uniformly distributed 

# Modification of values that are not within the interval [0,1] 

for(i in 1:n){ 

 c=U[i]+X[i] 

 V[i]<-if(0<=c& c<=1) c else if(c<0) -c else 2-c} 

 

# Depiction of QQ graph – compare with uniform distribution of U 
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qqplot(U,V, type="l", main="QQ-plot of distribution created from a normal 

", xlab="Quantiles of uniform distribution", ylab="Quantiles of the result-

ing distribution") 

 

# If V is uniformly distributed, it should be true that the q-th quantile 

of V is equal to q. Therefore, we calculate this difference for several 

different values of q and determine the maximum absolute difference.  

s <- seq(from=0.01,to=0.99,by=0.01)  # calculated quantiles 

max(abs(quantile(V,s)-s))       # maximal difference 

 

#Testing by K-S test 

ks.test(V,"punif",0,1) 

 

## Testing other distributions of X 

require("truncnorm") 

X2 <- c(rtruncnorm(n/2, a=-0.5, b=.5, mean=-0.1, sd=.5), 

    rtruncnorm(n/2, a=-0.5, b=.5, mean=0.1, sd=.5)) 

for(i in 1:n){ 

 c=U[i]+X2[i] 

 V[i]<-if(0<=c& c<=1) c else if(c<0) -c else 2-c} 

ks.test(V,"punif",0,1) 

 

X3 <- c(rtruncnorm(n/2, a=-0.5, b=.5, mean=-0.4, sd=.5), 

    rtruncnorm(n/2, a=-0.5, b=.5, mean=0.4, sd=.5)) 

for(i in 1:n){ 

 c=U[i]+X3[i] 

 V[i]<-if(0<=c& c<=1) c else if(c<0) -c else 2-c} 

ks.test(V,"punif",0,1) 

 

B.2. Creating graphs illustrating the Sidewalk Method  

In Chapter 4.5, we describe a calibration method in which the model goes through the population one 
person at a time and always adjusts the probabilities of transition to a particular state according to how 
many people have already entered that state during the projection. The formula contains a coefficient 𝑘 
that determines the sensitivity of the calibrated probability to the magnitude of the difference between 
the calibration target and the number of transitions to date – a higher 𝑘 means a higher sensitivity. To 

illustrate the impact of choice of 𝑘, two graphs are provided. These can be generated in the R software 
using the code below. One can run the code by simply uploading it to the R console. 

 

sidewalk_coef <- function(cf=1, prob=c(0.2,0.5,0.8)) { 

  

 s <- seq(-1,1,0.001) 

 logit <- function(x) {return(log(x/(1-x)))} 

 logitinv <- function(x) {return(exp(x)/(exp(x)+1))} 
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 plot(s, logitinv(logit(prob[1])+cf*s),type="l", ylim=c(0,1), col="green", 

xlab=paste0("Normalized distance to target"), ylab="Calibrated probabil-

ity", main=paste0("Sidewalk Method using coefficient ", cf))  

 points(s, logitinv(logit(prob[2])+cf*s),type="l", col="blue") 

 points(s, logitinv(logit(prob[3])+cf*s),type="l", col="red") 

 abline(v=0)} 

 

sidewalk_coef(cf=1) 

sidewalk_coef(cf=5) 

B.3. Illustration of the sidewalk method in MS Excel 

The sidewalk method described in Chapter 4.5 is further illustrated on a prototype in MS Excel, in which 
we calibrate transition probabilities according to the current state. 

Excel demonstrates the sidewalk method at 1000 random model points with three possible positions in 
the labor market: employment, unemployment and inactivity. At the same time, we are also introducing 
the “in household” status that makes it impossible to switch to unemployment (and thus only allows 
transitions between employment and inactivity according to adjusted probabilities). The methodology of 
these two functionalities is the same as that of most transitions that occur in the current Prophet mi-
crosimulation model, so the prototype provides a good idea of how the calibration method will be trans-
late into the NEMO model. Initial states were generated randomly according to the expected distribution. 
Initial transition probabilities were taken from the NEMO model. 

The projection is started on the “Results” sheet using the “Run simulation” button. Each model point is 
projected for the next 30 years. The transition probabilities are adjusted according to the current state 
and the parameter determining the calibration speed. 

The overall results can be seen in the “Result” sheet. Excel allows to test the calibration speed beyond 
the projections on the “Cal_speed” sheet. For a given probability and calibration speed, one can see a 
change in the probability of transition depending on the distance of the results from the calibration target. 

MPSV_sidewalk_meth

od_illustration.xlsm
 

B.4. Illustration of calibration by alignment by sorting 

In Chapter 4.7.2, we gave an example of the alignment by sorting calibration method, which selects the 
individuals for whom it simulates a given event by sorting all persons from the population with respect 
to probabilities of the event. Specifically, we present three variants, the first one works with probabilities 
as such, the second one adds to each of them a random realization of the uniform distribution, and the 
last one is transformed using the logit and inverse logit functions. The following code is written for the R 
software, requires the ggplot2 and tidyr libraries, and draws a graphical representation of the usage of 
each of the variants in the above mentioned example. Moreover, it illustrates that this method retains 
symmetry when using the logit transformation.  

N=1000 #number of persons in modeled population 

M=150 #the number of individuals for which an event occurs 

people_prob=rlnorm(N, meanlog = 0, sdlog = .5) 

people_prob=people_prob/max(people_prob)-min(people_prob/max(peo-

ple_prob))/2 

 

# sorting individuals according to their initial probabilities 
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col_by_ord=c(1:N) 

for(i in 1:N) {col_by_ord[i]<-match(i, order(people_prob, decreasing = 

TRUE))} 

 

x<-runif(N, min = 0, max = 1)  

 

logit <- function(y) {return(log(y/(1-y)))} 

logitinv <- function(y) {return(exp(y)/(exp(y)+1))} 

 

library(ggplot2)  

library(tidyr) 

 

# An areay of primary probabilities and "their order" 

df_1 <- data.frame( 

 prob=people_prob, 

 ord=col_by_ord) 

 

#generated probabilities 

data_graph<-ggplot(data=df_1, aes(x=c(1:N), y=people_prob, fill=ord)) + 

 geom_bar(stat="identity")+ 

 theme_classic()+ 

 labs(title= "Primary probabilities",y= "p", x = "individual",fill =  

"order\nof primary\nprobabilities") 

data_graph  

 

#ordered primary probabilities 

df_2 <- df_1[order(df_1$prob, decreasing = FALSE), ] 

 

data_graph_sorted<-ggplot(data=df_2, aes(x=c(1:N), y=df_2$prob, 

fill=df_2$ord)) + 

 geom_bar(stat="identity")+ 

 theme_classic()+ 

 labs(title= "Ordered primary probabilities ",y= "p", x = "individual",fill 

= "order of\nprimary\nprobabilities")+ 

 geom_vline(xintercept = N-M,  

       color = "Darkgreen", size=1.3) 

data_graph_sorted  

 

#adding x 

df_3 <- df_2 

df_3$prob<-df_3$prob+x 
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df_3<-df_3[order(df_3$prob, decreasing = FALSE), ] 

 

data_graph_sorted_x<-ggplot(data=df_3, aes(x=c(1:N), y=df_3$prob, 

fill=df_3$ord)) + 

 geom_bar(stat="identity")+ 

 theme_classic()+ 

 labs(title= "Ordered probabilities after adding x",y= "p + x", x =  

"individual",fill = "order of\nprimary\nprobabilities")+ 

 geom_vline(xintercept = N-M,  

       color = "Darkgreen", size=1.3) 

data_graph_sorted_x  

 

#logit tranformation 

df_4 <- df_2 

df_4$prob<-logitinv(logit(df_2$prob)+x) 

df_4<-df_4[order(df_4$prob, decreasing = FALSE), ] 

 

data_graph_sorted_x_logit<-ggplot(data=df_4, aes(x=c(1:N), y=df_4$prob, 

fill=df_4$ord)) + 

 geom_bar(stat="identity")+ 

 theme_classic()+ 

 labs(title= "Ordered probabilities after logit transformation",y= 

bquote('logit'^-1~'(logit(p)+x)'), x = " individual ",fill = "order 

of\nprimary\nprobabilities")+ 

 geom_vline(xintercept = N-M,  

       color = "Darkgreen", size=1.3) 

data_graph_sorted_x_logit  

 

#symmetric task for logit transformation 

df_4_sym <- df_2 

df_4_sym$prob<-logitinv(logit(1-df_2$prob)+x) 

df_4_sym<-df_4_sym[order(df_4_sym$prob, decreasing = FALSE), ] 

 

data_graph_sorted_x_logit_sym<-ggplot(data=df_4_sym, aes(x=c(1:N), 

y=df_4_sym$prob, fill=df_4_sym$ord)) + 

 geom_bar(stat="identity")+ 

 theme_classic()+ 

 labs(title= " Ordered probabilities after logit transformation in symmet-

ric task",y= bquote('logit'^-1~'(logit(1-p)+x)'), x = "individual",fill = 

"order of\nprimary\nprobabilities")+ 

 geom_vline(xintercept = M,  

       color = "Darkgreen", size=1.3) 

data_graph_sorted_x_logit_sym  
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